
Hossein Mos’hafi

Introduction to
 Cosmological Codes:

CAMB/ CosmoMC

SBU,
Spring 2018

Outline

Introduction to CAMB

Introduction to CosmoMC

CAMB
Code for Anisotropies in the Microwave Background

Main authors: Antony Lewis, Anthony Challinor

Language: Fortran + Python wrapper

Includes: Halofit; scalar, vector and tensor modes; polarization; lensed CMB  
and lensing potential

Internal parallelization of loops; support for adiabatic or  
isocurvature initial conditions; estimates bispectrum; controllable accuracy

It solves Boltzmann equations and computes: CMB power spectra ,Transfer
functions, Matter power spectrum

CAMB is available at camb.info or on GitHub: github.com/cmbant/CAMB.git

Also there is web interface for CAMB on the LAMBDA website:

https://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm

http://camb.info
http://github.com/cmbant/CAMB.git

Einstein-Boltzmann Eqs.

1) !ΘT + ikµΘT + !Φ+ ikµΨ = − !τ[Θ0 −Θ + µvb −
1
2
P2(µ)Π]

2) !ΘP + ikµΘP = − !τ[−ΘP +
1
2

(1−P2(µ))Π]

Π =ΘT 2 +ΘP2 +ΘP0

3) !N + ikµN + !Φ+ ikµΨ = 0

Liouville	term Collision	term

4) !δ c = −ikvc − 3 !Φ

5) !δ b = −ikvb − 3 !Φ
6) !vc = −Hvc − ikΨ

7) !vb = −Hvb − ikΨ +
!τ
R

[vb + 3iΘ1],
1
R
≡

4ργ
(0)

3ρb
(0)

{Einstein+Boltzmann equ.

{EB equs. with fluid
approximation

 (Euiler+continuity)

Photon/Neutrinos

Baryon/CDM

CAMB Outputs
Outputs:

Spectrum of the cosmic microwave background anisotropies:

root_scalCls.dat: {l, CTT, CEE, CTE, [Cphiphi, CphiT]}

root_lensedCls.dat: {l, CTT, CEE, CBB, CTE}

root_lenspotentialCls.dat: {l, CTT, CEE, CBB, CTE, Cdd, CdT, CdE}

root_tensCls.dat: {l, CTT, CEE, CBB, CTE}

Matter power spectrum : root_matterpower.dat : {k, Pk}

Transfer function for all particle perturbations: root_transfer_out.dat: 
{k/h, Delta_CDM/k^2, Delta_b/k^2, Delta_r/k^2, Delta_nu/k^2, Delta_tot/
k^2}

Temperature anisotropies power spectrum

Matter power spectrum

CAMB program files
bessels.f90 camb.f90 cmbmain.f90 constants.f90

cosmorec.f90 equations.f90 halofit.f90 hyrec.f90

inidriver.f90 inifile.f90 lensing.f90 Matrix_utils.f90

modules.f90 power_tilt.f90 recfast.f90 reionization.f90

SeparableBispectrum
.F90 sigma8.f90 subroutines.f90 tester.f90

utils.f90 writefits.f90

CAMB program files
drivers: can be used to run different tests

bessels.f90 camb.f90 cmbmain.f90 constants.f90

cosmorec.f90 equations.f90 halofit.f90 hyrec.f90

inidriver.f90 inifile.f90 lensing.f90 Matrix_utils.f90

modules.f90 power_tilt.f90 recfast.f90 reionization.f90

SeparableBispectrum
.F90 sigma8.f90 subroutines.f90 tester.f90

utils.f90 writefits.f90

CAMB files:
drivers: can be used to run different tests

Inidriver: Reads in parameters from a file of name/
value pairs and calls CAMB. Modify this file to generate
grids of models, change the parametrization, etc.

sigma8, tester: Sample programs. These are supplied
showing how to use CAMB from your own programs.

inidriver.f90sigma8.f90 tester.f90

CAMB program files
without cosmological logic

bessels.f90 camb.f90 cmbmain.f90 constants.f90

cosmorec.f90 equations.f90 halofit.f90 hyrec.f90

inidriver.f90 inifile.f90 lensing.f90 Matrix_utils.f90

modules.f90 power_tilt.f90 recfast.f90 reionization.f90

SeparableBispectrum
.F90 sigma8.f90 subroutines.f90 tester.f90

utils.f90 writefits.f90

6 programs with useful routines

Never change them !

bessels.f90

inifile.f90

Matrix_utils.f90

utils.f90

writefits.f90

CAMB program files
without cosmological logic

subroutines.f90

CAMB program files
with cosmology inside

bessels.f90 camb.f90 cmbmain.f90 constants.f90

cosmorec.f90 equations.f90 halofit.f90 hyrec.f90

inidriver.f90 inifile.f90 lensing.f90 Matrix_utils.f90

modules.f90 power_tilt.f90 recfast.f90 reionization.f90

SeparableBispectrum
.F90 sigma8.f90 subroutines.f90 tester.f90

utils.f90 writefits.f90

cmbmain.f90: The main subroutine that does integrations, etc.
Encompasses CMBFAST’s cmbflat and cmbopen.

camb.f90: Main wrapper routines for running CAMB in your
programs.

Add “use camb” to your programs and call
CAMB_GetResults to generate output from a set of model
parameters.

use CAMB_GetAge to compare the age of a model, and
CAMB_GetCls to retrieve the computed Cls.

recfast.f90: RECFAST integrator for cosmic recombination of
hydrogen and helium. It could be replaced by more detailed
codes : CosmoRec and HyRec.

CAMB program files
with cosmology inside

power_tilt.f90: This file defines a module called
InitialPower that returns the initial power spectra.
Change this file to use your own initial power spectrum.

reionization.f90: This file defines a module called
Reionization that parametrizes the deionization history
and supplies a function Reionization_xe that gives xe
as a function of redshift.

halofit.f90: Implements the NonLinear modules, to
calculate non linear scalings of the matter power
spectrum as a function of redshift. This models can be
replaced to use different non linear fitting methods.

CAMB program files
with cosmology inside

lensing.f90: Lensing module for computing the lensed
CMB power spectra from unlicensed spectra and a lensing
power spectrum.

SeparableBispectrum.f90: Implements calculation of
simple separable primordial bispectra, specifically the local
constant f_NL model, and the CMB lensing bispectrum due
to the linear temperature and polarization cross-correlation
with the lensing potential.

equations.f90: File containing background and
perturbation evolution equations. The perturbations
equations used are derived in the covariant approach, fixing
to the CDM (zero acceleration) frame, which are equivalent
to the synchronous gauge equations.

CAMB program files
with cosmology inside

CAMB: Python wrapper

Modification Examples

Initial power

Background

PR = As
k
kp

⎛

⎝⎜
⎞

⎠⎟

ns−1

× 1+α cos(k
kp
)

⎛

⎝⎜
⎞

⎠⎟

w(a) = w0 +w1(1− a)

Standard Model

Standard model of cosmology is current simplest
framework to describe the cosmological observations.

The standard cosmological model is 𝚲CDM model. In
this model, the Universe contains dark matter (and
baryonic) , and the accelerated expansion rate is due to
a cosmological constant (𝚲).

Also the gravity is deBined by FLRW metric.

Standard Model
There are “6” parameters in the ‘base’ 𝚲CDM model:

Physical density of baryonic matter

Physical density of cold dark matter

The local expansion rate

The optical depth to reionization

Amplitude of primordial scalar power spectrum

Spectral index of scalar power spectrum

Ωbh
2 ,Ωch

2 ,H0 ,τ re ,As ,ns{ }
Ωbh

2

Ωch
2

H0
τ re

AS
nS

Beyond the Standard Model
There are some additional parameters not included in base model.

The curvature of the Universe

The amount of matter in the form of massive neutrinos

The effective number of relativistic species at recombination

The equation of state of dark energy (and its time dependence)

The tensor to scalar power spectrum ratio

Number of e-folds

Non-Gaussianity

Running of spectral index

ModiBied gravity parameters

ΩK

Neff
w0 ,war

a

fNL

mν∑

N

nrun

Cosmological Observations
Cosmic Microwave Background (temperature and
polarization)

Matter power spectrum (clusters, weak lensing, lyman
alpha)

Standard markers (candles, rulers, clocks,…)

Cosmological Datasets

CMB. Angular power spectrum of temperature and
polarization. Latest measurements by Planck satellite.

BAO. Cosmic distance scale measurements using
Baryon Acoustic Oscillations. Latest is BOSS.

SN. Type-Ia Supernovae. Distance modulus from the
luminosity distance derived by the explosion of SNIa.
Latest compilation by Joint Light Curve analysis (JLA).

Cosmological Datasets
P(k). Measured by clustering of the galaxy distribution or
distribution of Lyman- Alpha Forest.

H0. Direct measurements of the expansion rate in the local Universe
using cepheids, SN host galaxies, and water maser distances.

RSD. Redshift space distortions. Measuring the clustering of
cosmic tracers such as galaxies and Ly-alpha forest in redshift
space it is possible to derive structure growth and test GR. Every
galaxy survey has provided a measurement.

Others: Weak-Lensing, SZ, …

CosmoMC
Cosmological Monte Carlo is a parameter sampling code,
implements the Metropolis- Hastings algorithm to sample a given
parameter space.

It is bundled up with likelihood codes from the most recent data
such as CMB likelihood from Planck, BAO likelihood from BOSS or
SN likelihood from JLA.

It is written in Fortran 90.

GetDist package analyzes Markov chains and produces parameter
tables and plots.

Source code is available at:  
http://cosmologist.info/cosmomc/

Markov Chain Monte Carlo (MCMC)
It is a random walk to effectively sample a multi-dimensional
parameter space (when the number of dimensions is large,
sampling a grid is expensive)

We use the Metropolis-Hastings algorithm: 
if a step puts you in a place with more probability -> ACCEPT if
not -> ACCEPT with probability=likelihood ratio=Pnew/Pold)
otherwise, REJECT (try a different move from previous step)

CosmoMC parallels MCMC processes. Independent, but
communicating, MCMC going by different paths to reach the
same best fit region with velocity and precision.

𝝌2 and Likelihood
The measurements in cosmological datasets are translated to likelihoods. The
total likelihood, assuming the measurements of the experiments are not correlated,
is the product of individual likelihoods.  

However in practice, CosmoMC uses the log of the likelihood (with opposite sign),
which is closely related to the value of the χ2 distribution. These are related by the
equation:  

Where the χ2 for simple cases is just (measurement-theory)2/error2, or more  
generally χ2 = (D-T)t 𝐂-1 (D-T) where D is a vector of data measurements and T  
is the theory vector generated at each MCMC step. 𝐂 is the covariance  
matrix whose elements are the covariances between parameters 𝐂={σθi,θj}, so  
that the diagonal elements are σ2

θi and the off-diagonal are σθiθj = ρij σθi σθj

L ∝ e
− χ

2

2

MCMC chains

number of steps -log(L) Model parameters

MCMC step

Parameters
In CosmoMC there are three types of parameters:

Cosmological parameters: these are the ones you want to
vary, as part of the cosmological model you choose. The
default is the 6 LCDM base parameters.

Nuisance parameters: these are forced to vary when you
include some particular dataset because this is the way to
marginalize over systematic effects. They are added
automatically when you use that data.

Derived parameters: these are not varied themselves, but
they depend on cosmological parameters, so you indirectly
obtain constraints on them.

Convergence:
Gelman-Rubin criterion

The R-1 estimator is defined roughly as “the variance
of the chain means divided by the mean of the
variance”. A set of chains is declared converged when
this estimator is small enough (typically 0.01)

GetDist products
root.likestats and root.margestats: parameter
constraints

root.corr and root.covmat: these are the correlation
matrix Rij and the covariance matrix Cij of the chain
parameters, where Rij= Cij/sqrt(Cii Cjj). The file root.covmat
can be used in params.ini to help in faster convergence

root.converge: Contains information on the convergence
of your chains

Margestats

This is the most valuable product of your chain. It
contains the mean value of each paramter, its
standard deviation , its lower and upper limits for
68%, 95% , 99% confidence levels and chi2

Likestats

This file contains less relevant, but still sometimes useful
information. it is NOT what you usually would report in a paper.

This contains the best fit value and the bounds of the mean
likelihood distribution (not the posterior!) for each parameter

Bestfit value is better computed by action=2 anyway

Gaussian

 
Bimodal

Bimodal

Hammer

Broad tail

Skew

C=0 C=0.4C=1

Other codes
A strong competitor is MontePython, a python code that interfaces the
Boltzmann solver CLASS. The advantage of CLASS over CAMB is that it
matches the notation in Ma & Bertschinger, so it is easier to generalize  

A rising code is cosmosis, another python code that is extremely modular,
which makes it easy to switch between MCMC samplers, Boltzmann codes 

Other samplers have been used in the past (CosmoPMC, PICO, etc.) but
they do not seem to be in active development or use approximated
methods  

