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Preface
The purpose of this book is to provide an introduction to space mechanics for undergraduate engi-
neering students. It is not directed toward graduate students, researchers, and experienced practi-
tioners, who may nevertheless find useful review material within the book’s contents. The intended
readers are those who are studying the subject for the first time and have completed courses in physics,
dynamics, and mathematics through differential equations and applied linear algebra. I have tried my
best to make the text readable and understandable to that audience. In pursuit of that objective, I have
included a large number of example problems that are explained and solved in detail. Their purpose is
not to overwhelm but to elucidate. I find that students like the “teach by example” method. I always
assume that the material is being seen for the first time and, wherever possible, I provide solution
details so as to leave little to the reader’s imagination. The numerous figures throughout the book are
also intended to aid comprehension. All of the more labor-intensive computational procedures are
accompanied by the MATLAB�code.

I retained the content and style of the second edition. Although I added some new homework
problems, I made few if any changes to Chapters 1–11. I corrected all the errors that I discovered or
that were reported to me by students, teachers, reviewers, and other readers. Chapter 12 on pertur-
bations is new. The addition of this chapter is accompanied by some new MATLAB scripts in
Appendix D and a new Appendix F.

The organization of the book remains the same as that of the second edition. Chapter 1 is a review
of vector kinematics in three dimensions and of Newton’s laws of motion and gravitation. It also
focuses on the issue of relative motion, crucial to the topics of rendezvous and satellite attitude
dynamics. The new material on ordinary differential equation solvers will be useful for students who
are expected to code numerical simulations in MATLAB or other programming languages. Chapter 2
presents the vector-based solution of the classical two-body problem, resulting in a host of practical
formulas for the analysis of orbits and trajectories of elliptical, parabolic, and hyperbolic shape. The
restricted three-body problem is covered in order to introduce the notion of Lagrange points and to
present the numerical solution of a lunar trajectory problem. Chapter 3 derives Kepler’s equations,
which relate position to time for the different kinds of orbits. The universal variable formulation is also
presented. Chapter 4 is devoted to describing orbits in three dimensions. Coordinate transformations
and the Euler elementary rotation sequences are defined. Procedures for transforming back and forth
between the state vector and the classical orbital elements are addressed. The effect of the earth’s
oblateness on the motion of an orbit’s ascending node and eccentricity vector is examined. Chapter 5 is
an introduction to preliminary orbit determination, including Gibbs’ and Gauss’s methods and the
solution of Lambert’s problem. Auxiliary topics include topocentric coordinate systems, Julian day
numbering, and sidereal time. Chapter 6 presents the common means of transferring from one orbit to
another by impulsive delta-v maneuvers, including Hohmann transfers, phasing orbits, and plane
changes. Chapter 7 is a brief introduction to relative motion in general and to the two-impulse
rendezvous problem in particular. The latter is analyzed using the Clohessy–Wiltshire equations,
which are derived in this chapter. Chapter 8 is an introduction to interplanetary mission design using
patched conics. Chapter 9 presents those elements of rigid-body dynamics required to characterize the
attitude of a space vehicle. Euler’s equations of rotational motion are derived and applied in a number
of example problems. Euler angles, yaw, pitch, and roll angles, and quaternions are presented as ways
to describe the attitude of a rigid body. Chapter 10 describes the methods of controlling, changing, and
stabilizing the attitude of spacecraft by means of thrusters, gyros, and other devices. Chapter 11 is
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a brief introduction to the characteristics and design of multistage launch vehicles. Chapter 12 is an
introduction to common orbital perturbations: drag, nonspherical gravitational field, solar radiation
pressure, and lunar and solar gravity.

Chapters 1–4 form the core of a first orbital mechanics course. The time devoted to Chapter 1
depends on the background of the student. It might be surveyed briefly and used thereafter simply as
a reference. What follows Chapter 4 depends on the objectives of the course.

Chapters 5–8 carry on with the subject of orbital mechanics, as does Chaper 12. Chapter 6 on
orbital maneuvers should be included in any case. Coverage of Chapters 5, 7, and 8 is optional.
However, if all of Chapter 8 on interplanetary missions is to form a part of the course, then the solution
of Lambert’s problem (Section 5.3) must be studied beforehand.

Chapters 9 and 10 must be covered if the course objectives include an introduction to satellite
dynamics. In that case Chapters 5, 7, and 8 would probably not be studied in depth.

Chapter 11 is optional if the engineering curriculum requires a separate course in propulsion,
including rocket dynamics.

Finally, Chapter 12 is appropriate for a course devoted exclusively to orbital mechanics with an
introduction to perturbations, which is a whole topic unto itself.

The important topic of spacecraft control systems is omitted. However, the material in this book
and a course in control theory provide the basis for the study of spacecraft attitude control.

To understand the material and to solve problems requires using a lot of undergraduate mathe-
matics. Mathematics, of course, is the language of engineering. Students must not forget that Sir Isaac
Newton had to invent calculus so he could solve orbital mechanics problems in more than just
a heuristic way. Newton (1642–1727) was an English physicist and mathematician whose 1687
publication Mathematical Principles of Natural Philosophy (the Principia) is one of the most influ-
ential scientific works of all times. It must be noted that the German mathematician Gottfried Wil-
helmvon Leibnitz (1646–1716) is credited with inventing infinitesimal calculus independently of
Newton in the 1670s.

In addition to honing their math skills, students are urged to take advantage of computers (which,
incidentally, use the binary numeral system developed by Leibnitz). There are many commercially
available mathematics software packages for personal computers. Wherever possible, they should be
used to relieve the burden of repetitive and tedious calculations. Computer programming skills can and
should be put to good use in the study of orbital mechanics. The elementary MATLAB programs
referred to in Appendix D of this book illustrate how many of the procedures developed in the text can
be implemented in software. All of the scripts were developed and tested using MATLAB version 8.0
(release 2012b). Information about MATLAB, which is a registered trademark of The MathWorks,
Inc., may be obtained from.

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2089, USA
www.mathworks.com
Appendix A presents some tables of physical data and conversion factors. Appendix B is a road

map through the first three chapters, showing how the most fundamental equations of orbital
mechanics are related. Appendix C shows how to set up the n-body equations of motion and program
them in MATLAB. Appendix D contains listings of all of the MATLAB algorithms and example
problems presented in the text. Appendix E shows that the gravitational field of a spherically
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symmetric body is the same as if the mass were concentrated at its center. Appendix F explains how to
deal with a computational issue that arises in some perturbation analyses.

The field of astronautics is rich and vast. References cited throughout this text are listed at the end
of the book. Also listed are other books on the subject that might be of interest to those seeking
additional insights.

Supplements to the text
For purchasers of the book, copies of the MATLAB M-files listed in Appendix D can be freely
downloaded from this book’s companion website. Also available on the companion website are a set of
animations that accompany the text. To access these files, please visit http://booksite.elsevier.com/
9780080977478/.

For instructors using this book for a course, please visit www.textbooks.elsevier.com to register for
access to the solutions manual, PowerPoint lecture slides, and other resources.
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Dynamics of Point Masses 1
CHAPTER OUTLINE
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1.1 Introduction
This chapter serves as a self-contained reference on the kinematics and dynamics of point masses as
well as some basic vector operations and numerical integration methods. The notation and concepts
summarized here will be used in the following chapters. Those familiar with the vector-based
dynamics of particles can simply page through the chapter and then refer back to it later as neces-
sary. Those who need a bit more in the way of review will find that the chapter contains all of the
material they need in order to follow the development of orbital mechanics topics in the upcoming
chapters.

CHAPTER
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Copyright � 2014 Elsevier Ltd. All rights reserved.
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We begin with a review of vectors and some vector operations, after which we proceed to the
problem of describing the curvilinear motion of particles in three dimensions. The concepts of force
and mass are considered next, along with Newton’s inverse-square law of gravitation. This is followed
by a presentation of Newton’s second law of motion (“force equals mass times acceleration”) and the
important concept of angular momentum.

As a prelude to describing motion relative to moving frames of reference, we develop formulas for
calculating the time derivatives of moving vectors. These are applied to the computation of relative
velocity and acceleration. Example problems illustrate the use of these results, as does a detailed
consideration of how the earth’s rotation and curvature influence our measurements of velocity and
acceleration. This brings in the curious concept of Coriolis force. Embedded in exercises at the end of
the chapter is practice in verifying several fundamental vector identities that will be employed
frequently throughout the book.

The chapter concludes with an introduction to numerical methods, which can be called upon to
solve the equations of motion when an analytical solution is not possible.

1.2 Vectors
A vector is an object, which is specified by both a magnitude and a direction. We represent a vector
graphically by a directed line segment, that is, an arrow pointing in the direction of the vector. The end
opposite the arrow is called the tail. The length of the arrow is proportional to the magnitude of the
vector. Velocity is a good example of a vector. We say that a car is traveling eastward at 80 km/h. The
direction is east, the magnitude, or speed, is 80 km/h. We will use boldface type to represent vector
quantities and plain type to denote scalars. Thus, whereas B is a scalar, B is a vector.

Observe that a vector is specified solely by its magnitude and direction. If A is a vector, then all
vectors having the same physical dimensions, the same length, and pointing in the same direction as A
are denoted A, regardless of their line of action, as illustrated in Figure 1.1. Shifting a vector parallel to
itself does not mathematically change the vector. However, the parallel shift of a vector might produce
a different physical effect. For example, an upward 5 kN load (force vector) applied to the tip of an
airplane wing gives rise to quite a different stress and deflection pattern in the wing than the same load
acting at the wing’s midspan.

The magnitude of a vector A is denoted kAk, or, simply A.

FIGURE 1.1

All of these vectors may be denoted A, since their magnitudes and directions are the same.
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Multiplying a vector B by the reciprocal of its magnitude produces a vector that points in the
direction of B, but it is dimensionless and has a magnitude of one. Vectors having unit dimensionless
magnitude are called unit vectors. We put a hat ð

ˇ

Þ over the letter representing a unit vector. Then we
can tell simply by inspection that, for example, û is a unit vector, as are B̂ and ê.

It is convenient to denote the unit vector in the direction of the vector A as ûA. As pointed out
above, we obtain this vector from A as follows:

ûA …
A
A

(1.1)

Likewise, ûC … C=C, ûF … F=F, etc.
The sum or “resultant” of two vectors is defined by the parallelogram rule (Figure 1.2). Let C be the

sum of the two vectors A and B .To form that sum using the parallelogram rule, the vectors A and B are
shifted parallel to themselves (leaving them unaltered) until the tail of A touches the tail of B. Drawing
dotted lines through the head of each vector parallel to the other completes a parallelogram. The
diagonal from the tails of A and B to the opposite corner is the resultant C. By construction, vector
addition is commutative, that is,

A þ B … B þ A (1.2)

A Cartesian coordinate system in three dimensions consists of three axes, labeled x, y, and z, which
intersect at the origin O. We will always use a right-handed Cartesian coordinate system, which means
if you wrap the fingers of your right hand around the z-axis, with the thumb pointing in the positive z
direction, your fingers will be directed from the x-axis toward the y-axis. Figure 1.3 illustrates such a
system. Note that the unit vectors along the x, y, and z axes are, respectively, î, ĵ, and k̂.

In terms of its Cartesian components, and in accordance with the above summation rule, a vector A
is written in terms of its components Ax, Ay, and Az as

A … Ax̂i þ Ay ĵ þ Azk̂ (1.3)

The projection of A on the xy plane is denoted Axy. It follows that

Axy … Ax̂i þ Ay ĵ

FIGURE 1.2

Parallelogram rule of vector addition.
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According to the Pythagorean theorem, the magnitude of A in terms of its Cartesian components is

A …
���������������������������
A2

x þ A2
y þ A2

z

q
(1.4)

From Eqns (1.1) and (1.3), the unit vector in the direction of A is

ûA … cos qx̂i þ cos qy ĵ þ cos qzk̂ (1.5)

where

cos qx …
Ax

A
cos qy …

Ay

A
cos qz …

Az

A
(1.6)

The direction angles qx, qy, and qz are illustrated in Figure 1.4 and are measured between the vector and
the positive coordinate axes. Note carefully that the sum of qx, qy, and qz is not in general known a
priori and cannot be assumed to be, say, 180�.

EXAMPLE 1.1
Calculate the direction angles of the vector A … î � 4̂j þ 8k̂.

Solution
First, compute the magnitude of A by means of Eqn (1.4),

A …
������������������������������������
12 þ ð�4Þ2 þ 82

q
… 9

Then, Eqn (1.6) yields

qx … cos�1
�

Ax

A

�
… cos�1

�
1
9

�
0 qx … 83:62�

FIGURE 1.3

Three-dimensional, right-handed Cartesian coordinate system.
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qy … cos�1
�

Ay

A

�
… cos�1

�
�4
9

�
0 qy … 116:4�

qz … cos�1
�

Az

A

�
… cos�1

�
8
9

�
0 qz … 27:27�

Observe that qx þ qy þ qz … 227.3�.

Multiplication and division of two vectors are undefined operations. There are no rules for computing
the product AB and the ratio A/B. However, there are two well-known binary operations on vectors:
the dot product and the crossproduct. The dot product of two vectors is a scalar defined as follows:

A$B … AB cos q (1.7)

where q is the angle between the heads of the two vectors, as shown in Figure 1.5. Clearly,

A$B … B$A (1.8)

FIGURE 1.4

Direction angles in three dimensions.

FIGURE 1.5

The angle between two vectors brought tail to tail by parallel shift.
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If two vectors are perpendicular to each other, then the angle between them is 90�. It follows from Eqn
(1.7) that their dot product is zero. Since the unit vectors î, ĵ, and k̂ of a Cartesian coordinate system are
mutually orthogonal and of magnitude 1, Eqn (1.7) implies that

î$̂i … ĵ$̂j … k̂$k̂ … 1
î$̂j … î$k̂ … ĵ$k̂ … 0

(1.9)

Using these properties, it is easy to show that the dot product of the vectors A and B may be found in
terms of their Cartesian components as

A$B … AxBx þ AyBy þ AzBz (1.10)

If we set B … A, then it follows from Eqns (1.4) and (1.10) that

A …
����������
A$A

p
(1.11)

The dot product operation is used to project one vector onto the line of action of another. We can
imagine bringing the vectors tail to tail for this operation, as illustrated in Figure 1.6. If we drop a
perpendicular line from the tip of B onto the direction of A, then the line segment BA is the orthogonal
projection of B onto the line of action of A. BA stands for the scalar projection of B onto A. From
trigonometry, it is obvious from the figure that

BA … B cos q

Let ûA be the unit vector in the direction of A. Then,

B$ûA … kBkkûAk
z�}|�{1

cos q … B cos q

Comparing this expression with the preceding one leads to the conclusion that

BA … B$ûA … B$
A
A

(1.12)

where ûA is given by Eqn (1.1). Likewise, the projection of A onto B is given by

AB … A$
B
B

Observe that AB … BA only if A and B have the same magnitude.

FIGURE 1.6

Projecting the vector B onto the direction of A.
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EXAMPLE 1.2
Let A … î þ 6̂j þ 18k̂ and B … 42̂i � 69̂j þ 98k̂. Calculate

(a) the angle between A and B;
(b) the projection of B in the direction of A;
(c) the projection of A in the direction of B.

Solution
First, we make the following individual calculations:

A$B … ð1Þð42Þ þ ð6Þð�69Þ þ ð18Þð98Þ … 1392 (a)

A …
�������������������������������������������
ð1Þ2 þ ð6Þ2 þ ð18Þ2

q
… 19 (b)

B …
����������������������������������������������������
ð42Þ2 þ ð�69Þ2 þ ð98Þ2

q
… 127 (c)

(a) According to Eqn (1.7), the angle between A and B is

q … cos�1
�

A$B
AB

�

Substituting Eqns (a), (b), and (c) yields

q … cos�1
�

1392
19,127

�
… 54:77�

(b) From Eqn (1.12), we �nd the projection of B onto A,

BA … B$
A
A

…
A$B
A

Substituting Eqns (a) and (b) we get

BA …
1392

19
… 73:26

(c) The projection of A onto B is

AB … A$
B
B

…
A$B
B

Substituting Eqns (a) and (c) we obtain

AB …
1392
127

… 10:96

The cross product of two vectors yields another vector, which is computed as follows:

A � B … ðAB sin qÞn̂AB (1.13)

where q is the angle between the heads of A and B, and n̂AB is the unit vector normal to the plane
defined by the two vectors. The direction of n̂AB is determined by the right-hand rule. That is, curl the
fingers of the right hand from the first vector (A) toward the second vector (B), and the thumb shows
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the direction of n̂AB (Figure 1.7). If we use Eqn (1.13) to compute B � A, then n̂AB points in the
opposite direction, which means

B � A … �ðA � BÞ (1.14)

Therefore, unlike the dot product, the crossproduct is not commutative.
The crossproduct is obtained analytically by resolving the vectors into Cartesian components.

A � B …
�

Ax̂i þ Ay ĵ þ Azk̂
�

�
�

Bx̂i þ By ĵ þ Bzk̂
�

(1.15)

Since the set î̂jk̂ is a mutually perpendicular triad of unit vectors, Eqn (1.13) implies that

î � î … 0 ĵ � ĵ … 0 k̂ � k̂ … 0
î � ĵ … k̂ ĵ � k̂ … î k̂ � î … ĵ

(1.16)

Expanding the right side of Eqn (1.15), substituting Eqn (1.16), and making use of Eqn (1.14) leads to

A � B …
�
AyBz � AzBy

	̂
i � ðAxBz � AzBxÞ̂j þ

�
AxBy � AyBx

	
k̂ (1.17)

It may be seen that the right-hand side is the determinant of the matrix
2

4
î ĵ k̂

Ax Ay Az
Bx By Bz

3

5

Thus, Eqn (1.17) can be written as

A � B …









î ĵ k̂
Ax Ay Az
Bx By Bz








(1.18)

where the two vertical bars stand for the determinant. Obviously, the rule for computing the cross-
product, though straightforward, is a bit lengthier than that for the dot product. Remember that the dot
product yields a scalar whereas the crossproduct yields a vector.

The crossproduct provides an easy way to compute the normal to a plane. Let A and B be any two
vectors lying in the plane, or, let any two vectors be brought tail to tail to define a plane, as shown in
Figure 1.7. The vector C … A � B is normal to the plane of A and B. Therefore, n̂AB … C=C, or

n̂AB …
A � B

kA � Bk
(1.19)

FIGURE 1.7

n̂AB is normal to both A and B and defines the direction of the crossproduct A � B.
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EXAMPLE 1.3
Let A … �3̂i þ 7̂j þ 9k̂ and B … 6̂i � 5̂j þ 8k̂. Find a unit vector, which lies in the plane of A and B and is
perpendicular to A.

Solution
The plane of vectors A and B is determined by parallelly shifting the vectors so that they meet tail to tail. Calculate
the vector D … A � B.

D …









î ĵ k̂
�3 7 9
6 �5 8








… 101̂i þ 78̂j � 27k̂

Note that A and B are both normal to D. We next calculate the vector C … D � A.

C …









î ĵ k̂
101 78 �27
�3 7 9








… 891̂i � 828̂j þ 941k̂

C is normal to D as well as to A. A, B, and C are all perpendicular to D. Therefore, they are coplanar. Thus, C is not
only perpendicular to A, but it also lies in the plane of A and B. Therefore, the unit vector we are seeking is the unit
vector in the direction of C, namely,

ûC …
C
C

…
891̂i � 828̂j þ 941k̂

������������������������������������������������������
8912 þ ð�828Þ2 þ 9412

q

ûC … 0:5794̂i � 0:5384̂j þ 0:6119k̂

In the chapters to follow, we will often encounter the vector triple product, A � (B � C). By resolving
A, B, and C into their Cartesian components, it can easily be shown that the vector triple product can be
expressed in terms of just the dot products of these vectors as follows:

A � ðB � CÞ … BðA$CÞ � CðA$BÞ (1.20)

Because of the appearance of the letters on the right-hand side, this is often referred to as the “bac–cab
rule.”

EXAMPLE 1.4
If F … E � {D � [A � (B � C)]}, use the bacecab rule to reduce this expression to one involving only dot products.

Solution
First, we invoke the bacecab rule to obtain

F … E �

8
<

:
D � ‰BðA$CÞ � CðA$BÞ�

z��������������}|��������������{bac�cab rule 9
=

;

Expanding and collecting terms lead to

F … ðA$CÞ‰E � ðD � BÞ� � ðA$BÞ‰E � ðD � CÞ�

1.2 Vectors 9



We next apply the bacecab rule twice on the right-hand side.

F … ðA$CÞ

2

64DðE$BÞ � BðE$DÞ
z�������������}|�������������{bac�cab rule

3

75 � ðA$BÞ

2

64DðE$CÞ � CðE$DÞ
z�������������}|�������������{bac�cab rule

3

75

Expanding and collecting terms yield the sought-for result.

F … ‰ðA$CÞðE$BÞ � ðA$BÞðE$CÞ�D � ðA$CÞðE$DÞB þ ðA$BÞðE$DÞC

Another useful vector identity is the “interchange of the dot and the cross”:

A$ðB � CÞ … ðA � BÞ$C (1.21)

It is so-named because interchanging the operations in the expression A$B � C yields A � B$C. The
parentheses in Eqn (1.21) are required to show which operation must be carried out first, according to
the rules of vector algebra. (For example, (A$B) � C, the crossproduct of a scalar and a vector, is
undefined.) It is easy to verify Eqn (1.21) by substituting A … Ax̂i þ Ay ĵ þ Azk̂, B … Bx̂i þ By ĵ þ Bzk̂
and C … Cx̂i þ Cy ĵ þ Czk̂ and observing that both sides of the equal sign reduce to the same
expression.

1.3 Kinematics
To track the motion of a particle P through Euclidean space, we need a frame of reference,
consisting of a clock and a Cartesian coordinate system. The clock keeps track of time t, and the
xyz axes of the Cartesian coordinate system are used to locate the spatial position of the particle. In
nonrelativistic mechanics, a single “universal” clock serves for all possible Cartesian coordinate
systems. So when we refer to a frame of reference, we need to think only of the mutually
orthogonal axes themselves.

The unit of time used throughout this book is the second(s). The unit of length is the meter (m), but
the kilometer (km) will be the length unit of choice when large distances and velocities are involved.
Conversion factors between kilometers, miles, and nautical miles are listed in Table A.3.

Given a frame of reference, the position of the particle P at a time t is defined by the position vector
r(t) extending from the origin O of the frame out to P itself, as illustrated in Figure 1.8. The com-
ponents of r(t) are just the x, y, and z coordinates,

rðtÞ … xðtÞ̂i þ yðtÞ̂j þ zðtÞk̂

The distance of P from the origin is the magnitude or length of r, denoted krk or just r,

krk … r …
������������������������
x2 þ y2 þ z2

p

As in Eqn (1.11), the magnitude of r can also be computed by means of the dot product
operation,

r …
�������
r$r

p
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The velocity v and acceleration a of the particle are the first and second time derivatives of the position
vector,

vðtÞ …
dxðtÞ

dt
î þ

dyðtÞ
dt

ĵ þ
dyðtÞ

dt
k̂ … vxðtÞ̂i þ vyðtÞ̂j þ vzðtÞk̂

aðtÞ …
dvxðtÞ

dt
î þ

dvyðtÞ
dt

ĵ þ
dvzðtÞ

dt
k̂ … axðtÞ̂i þ ayðtÞ̂j þ azðtÞk̂

It is convenient to represent the time derivative by means of an overhead dot. In this shorthand no-
tation, if ðÞ is any quantity, then

_ð Þh
dð Þ
dt

ð Þ
,,

h
d2ð Þ
dt2

ð Þ
,,,

h
d3ð Þ
dt3

; etc:

Thus, for example,

v … _r

a … _v … €r

vx … _x vy … _y vz … _z

ax … _vx … €x ay … _vy … €y az … _vz … €z

The locus of points that a particle occupies as it moves through space is called its path or trajectory. If
the path is a straight line, then the motion is rectilinear. Otherwise, the path is curved, and the motion is
called curvilinear. The velocity vector v is tangent to the path. If ût is the unit vector tangent to the
trajectory, then

v … vût (1.22)

FIGURE 1.8

Position, velocity, and acceleration vectors.
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where the speed v is the magnitude of the velocity v. The distance ds that P travels along its path in the
time interval dt is obtained from the speed by

ds … v dt

In other words,

v … _s

The distance s, measured along the path from some starting point, is what the odometers in our
automobiles record. Of course, _s, our speed along the road, is indicated by the dial of the
speedometer.

Note carefully that vs _r, that is, the magnitude of the derivative of r does not equal the derivative of
the magnitude of r.

EXAMPLE 1.5
The position vector in meters is given as a function of time in seconds as

r …
�

8t2 þ 7t þ 6
�

î þ
�

5t3 þ 4
�

ĵ þ
�

0:3t4 þ 2t2 þ 1
�

k̂ðmÞ (a)

At t … 10 s, calculate (a) v (the magnitude of the derivative of r) and (b) _r (the derivative of the magnitude of r).

Solution
(a) The velocity v is found by differentiating the given position vector with respect to time,

v …
dr
dt

…
�

16t þ 7
�

î þ 15t2 ĵ þ
�

1:2t3 þ 4t
�

k̂

The magnitude of this vector is the square root of the sum of the squares of it components,

v …
�

1:44t6 þ 234:6t4 þ 272t2 þ 224t þ 49
�1

2

Evaluating this at t … 10 s, we get

v … 1953:3m=s

(b) Calculating the magnitude of r in Eqn (a) leads to

r …
�

0:09t8 þ 26:2t6 þ 68:6t4 þ 152t3 þ 149t2 þ 84t þ 53
�1

2

The time derivative of this expression is

_r …
dr
dt

…
0:36t7 þ 78:6t5 þ 137:2t3 þ 228t2 þ 149t þ 42

�
0:09t8 þ 26:2t6 þ 68:6t4 þ 152t3 þ 149t2 þ 84t þ 53

	1
2

Substituting t … 10 s yields

_r … 1935:5 m=s
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If v is given, then we can find the components of the unit tangent ût in the Cartesian coordinate frame
of reference by means of Eqn (1.22):

ût …
v
v

…
vx

v
î þ

vy

v
ĵ þ

vz

v
k̂

�
v …

�������������������������
v2

x þ v2
y þ v2

z

q �
(1.23)

The acceleration may be written as

a … atût þ anûn (1.24)

where at and an are the tangential and normal components of acceleration, given by

at … _v ð… €sÞ an …
v2

r
(1.25)

where r is the radius of curvature, which is the distance from the particle P to the center of curvature
of the path at that point. The unit principal normal ûn is perpendicular to ût and points toward the
center of curvature C, as shown in Figure 1.9. Therefore, the position of C relative to P, denoted rC/P,
is

rC=P … rûn (1.26)

The orthogonal unit vectors ût and ûn form a plane called the osculating plane. The unit normal to the
osculating plane is ûb, the binormal, and it is obtained from ût and ûn by taking their crossproduct:

ûb … ût � ûn (1.27)

From Eqns (1.22), (1.24), and (1.27), we have

v � a … vût � ðatût þ anûnÞ … vanðût � ûnÞ … vanûb … kv � akûb

FIGURE 1.9

Orthogonal triad of unit vectors associated with the moving point P.

1.3 Kinematics 13



That is, an alternative to Eqn (1.27) for calculating the binormal vector is

ûb …
v � a

kv � ak
(1.28)

Note that ût, ûn, and ûb form a right-handed triad of orthogonal unit vectors. That is

ûb � ût … ûn ût � ûn … ûb ûn � ûb … ût (1.29)

The center of curvature lies in the osculating plane. When the particle P moves an incremental distance
ds, the radial from the center of curvature to the path sweeps out a small angle, df, measured in the
osculating plane. The relationship between this angle and ds is

ds … rdf

so that _s … r _f, or

_f …
v
r

(1.30)

EXAMPLE 1.6
Relative to a Cartesian coordinate system, the position, velocity, and acceleration of a particle P at a given instant are

r … 250̂i þ 630̂j þ 430k̂ðmÞ (a)

v … 90̂i þ 125̂j þ 170k̂ðm=sÞ (b)

a … 16̂i þ 125̂j þ 30k̂
�

m=s2
�

(c)

Find the coordinates of the center of curvature at that instant.

Solution
The coordinates of the center of curvature C are the components of its position vector rC. Consulting Figure 1.9, we
observe that

rC … r þ rûn (d)

where r is the position vector of the point P, r is the radius of curvature, and ûn is the unit principal normal vector.
The position vector r is given in Eqn (a), but r and ûn are unknowns at this point. We must use the geometry of
Figure 1.9 to �nd them.

We �rst seek the value of ûn, starting with Eqn (1.291),

ûn … ûb � ût (e)

The unit tangent vector ût is found at once from the velocity vector in Eqn (b) by means of Eqn (1.23),

ût …
v
v

where

v …
�������������������������������������������
902 þ 1252 þ 1702

p
… 229:4 (f)

Thus,

ût …
90̂i þ 125̂j þ 170k̂

229:4
… 0:39233̂i þ 0:5449̂j þ 0:74106k̂ (g)
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To �nd the binormal ûb we insert the given velocity and acceleration vectors into Eqn (1.28),

ûb …
v � a

kv � ak
…









î ĵ k̂
90 125 170
16 125 30









kv � ak
…

�17 500̂i þ 20̂j þ 9250k̂
�������������������������������������������������������������
ð�17 500Þ2 þ 202 þ 92502

q

… �0:88409̂i þ 0:0010104̂j þ 0:46731k̂ (h)

Substituting Eqns (g) and (h) back into Eqn (e) �nally yields the unit principal normal

ûn …









î ĵ k̂
�0:88409 0:0010104 0:46731
0:39233 0:5449 0:74106








… �0:25389̂i þ 0:8385̂j � 0:48214k̂ (i)

The only unknown remaining in Eqn (d) is r, for which we appeal to Eqn (1.25),

r …
v2

an
(j)

The normal acceleration an is calculated by projecting the acceleration vector a onto the direction of the unit
normal ûn,

an … a$ûn …
�

16̂i þ 125̂j þ 30k̂
�

$
�

� 0:25389̂i þ 0:8385̂j � 0:48214k̂
�

… 86:287 m=s2 (k)

Putting the values of v and an in Eqns (f) and (k) into Eqn (j) yields the radius of curvature,

r …
229:42

86:287
… 609:89 m (l)

Upon substituting Eqns (a), (i), and (l) into Eqn (d), we obtain the position vector of the center of curvature C,

rC …
�

250̂i þ 630̂j þ 430k̂
�

þ 609:89
�
� 0:25389̂i þ 0:8385̂j � 0:48214k̂

�

… 95:159̂i þ 1141:4̂j þ 135:95k̂ (m)

Therefore, the coordinates of C are

x … 95:16 m y … 1141 m z … 136:0 m

1.4 Mass, force, and Newton’s law of gravitation
Mass, like length and time, is a primitive physical concept: it cannot be defined in terms of any other
physical concept. Mass is simply the quantity of matter. More practically, mass is a measure of the
inertia of a body. Inertia is an object’s resistance to changing its state of motion. The larger its inertia
(the greater its mass), the more difficult it is to set a body into motion or bring it to rest. The unit of
mass is the kilogram (kg).
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Force is the action of one physical body on another, either through direct contact or through a
distance. Gravity is an example of force acting through a distance, as are magnetism and the force
between charged particles. The gravitational force between two masses m1 and m2 having a distance r
between their centers is

Fg … G
m1m2

r2 (1.31)

This is Newton’s law of gravity, in which G, the universal gravitational constant, has the value
G … 6.6742 � 10�11 m3/(kg$s2). Due to the inverse-square dependence on distance, the force of
gravity rapidly diminishes with the amount of separation between the two masses. In any case, the
force of gravity is minuscule unless at least one of the masses is extremely big.

The force of a large mass (such as the earth) on a mass many orders of magnitude smaller (such as a
person) is called weight, W. If the mass of the large object is M and that of the relatively tiny one is m,
then the weight of the small body is

W … G
Mm
r2 … m

�
GM
r2

�

or

W … mg (1.32)

where

g …
GM
r2 (1.33)

g has units of acceleration (m/s2) and is called the acceleration of gravity. If planetary gravity is the
only force acting on a body, then the body is said to be in free fall. The force of gravity draws a freely
falling object toward the center of attraction (e.g., center of the earth) with an acceleration g. Under
ordinary conditions, we sense our own weight by feeling contact forces acting on us in opposition to
the force of gravity. In free fall, there are, by definition, no contact forces, so there can be no sense of
weight. Even though the weight is not zero, a person in free fall experiences weightlessness, or the
absence of gravity.

Let us evaluate Eqn (1.33) at the surface of the earth, whose radius according to Table A.1 is
6378 km. Letting g0 represent the standard sea-level value of g, we get

g0 …
GM
R2

E
(1.34)

In SI units,

g0 … 9:807 m=s2 (1.35)

Substituting Eqn (1.34) into Eqn (1.33) and letting z represent the distance above the earth’s surface, so
that r … RE þ z, we obtain

g … g0
R2

E

ðRE þ zÞ2 …
g0

ð1 þ z=REÞ2 (1.36)
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Commercial airliners cruise at altitudes on the order of 10 km (6 miles). At that height, Eqn (1.36)
reveals that g (and hence weight) is only three-tenths of a percent less than its sea-level value. Thus,
under ordinary conditions, we ignore the variation of g with altitude. A plot of Eqn (1.36) out to a
height of 1000 km (the upper limit of low-earth orbit operations) is shown in Figure 1.10. The variation
of g over that range is significant. Even so, at space station altitude (300 km), weight is only about 10%
less than it is on the earth’s surface. The astronauts experience weightlessness, but they clearly are not
weightless.

EXAMPLE 1.7
Show that in the absence of an atmosphere, the shape of a low altitude ballistic trajectory is a parabola. Assume
the acceleration of gravity g is constant and neglect the earth�s curvature.

Solution
Figure 1.11 shows a projectile launched at t … 0 with a speed v0 at a �ight path angle g0 from the point with
coordinates (x0, y0). Since the projectile is in free fall after launch, its only acceleration is that of gravity in the

FIGURE 1.10

Variation of the acceleration of gravity with altitude.

FIGURE 1.11

Flight of a low altitude projectile in free fall (no atmosphere).
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negative y-direction:

€x … 0
€y … �g

Integrating with respect to time and applying the initial conditions leads to

x … x0 þ ðv0cos g0Þt (a)

y … y0 þ ðv0 sin g0Þt �
1
2

gt2 (b)

Solving Eqn (a) for t and substituting the result into Eqn (b) yields

y … y0 þ ðx � x0Þtan g0 �
1
2

g
v2

0 cos2 g0
ðx � x0Þ2 (c)

This is the equation of a second-degree curve, a parabola, as sketched in Figure 1.11.

EXAMPLE 1.8
An airplane �ies a parabolic trajectory like that in Figure 1.11 so that the passengers will experience free fall
(weightlessness). What is the required variation of the �ight path angle g with speed v? Ignore the curvature of the
earth.

Solution
Figure 1.12 reveals that for a ��at� earth, dg … �df, i.e.,

_g … � _f

It follows from Eqn (1.30) that

r _g … �v (1.37)

The normal acceleration an is just the component of the gravitational acceleration g in the direction of the unit
principal normal to the curve (from P toward C). From Figure 1.12, then,

an … g cos g (a)

FIGURE 1.12

Relationship between dg and df for a “Flat” earth.
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Substituting Eqn (1.25) into Eqn (a) and solving for the radius of curvature yields

r …
v2

g cos g
(b)

Combining Eqns (1.37) and (b), we �nd the time rate of change of the �ight path angle,

_g … �
g cos g

v

1.5 Newton’s law of motion
Force is not a primitive concept like mass because it is intimately connected with the con-
cepts of motion and inertia. In fact, the only way to alter the motion of a body is to exert a
force on it. The degree to which the motion is altered is a measure of the force. Newton’s
second law of motion quantifies this. If the resultant or net force on a body of mass m is Fnet,
then

Fnet … ma (1.38)

In this equation, a is the absolute acceleration of the center of mass. The absolute acceleration
is measured in a frame of reference that itself has neither translational nor rotational acceler-
ation relative to the fixed stars. Such a reference is called an absolute or inertial frame of
reference.

Force, then, is related to the primitive concepts of mass, length, and time by Newton’s second law.
The unit of force, appropriately, is the Newton, which is the force required to impart an acceleration of
1 m/s2 to a mass of 1 kg. A mass of 1 kg therefore weighs 9.81 N at the earth’s surface. The kilogram is
not a unit of force.

Confusion can arise when mass is expressed in units of force, as frequently occurs in US engi-
neering practice. In common parlance either the pound or the ton (2000 lb) is more likely to be used to
express the mass. The pound of mass is officially defined precisely in terms of the kilogram as shown in
Table A.3. Since 1 lb of mass weighs 1 lb of force where the standard sea-level acceleration of gravity
(go … 9.80665 m/s2) exists, we can use Newton’s second law to relate the pound of force to the
Newton:

1 lb ðforceÞ … 0:4536 kg � 9:807 m=s2 … 4:448 N

The slug is the quantity of matter accelerated at 1 ft/s2 by a force of 1 lb. We can again use Newton’s
second law to relate the slug to the kilogram. Noting the relationship between feet and meters in
Table A.3, we find

1 slug …
1 lb

1ft=s2 …
4:448 N

0:3048 m=s2 … 14:59
kg$m=s2

m=s2 … 14:59 kg
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EXAMPLE 1.9
On a NASA mission, the space shuttle Atlantis orbiter was reported to weigh 239,255 lb just prior to liftoff. On
orbit 18 at an altitude of about 350 km, the orbiter�s weight was reported to be 236,900 lb. (a) What was the mass,
in kilograms, of the Atlantis on the launch pad and in orbit? (b) If no mass was lost between launch and orbit 18,
what would have been the weight of Atlantis, in pounds?

Solution
(a) The given data illustrate the common use of weight in pounds as a measure of mass. The �weights� given are

actually the mass in pounds of mass. Therefore, prior to launch

mlaunch pad … 239;255 lb ðmassÞ �
0:4536 kg
1 lb ðmassÞ

… 108;500 kg

In orbit,

morbit 18 … 236;900 lb ðmassÞ �
0:4536 kg
1 lb ðmassÞ

… 107;500 kg

The decrease in mass is the propellant expended by the orbital maneuvering and reaction control rockets on the
orbiter.

(b) Since the space shuttle launch pad at the Kennedy Space Center is essentially at sea level, the launch-pad
weight of Atlantis in pounds (force) is numerically equal to its mass in pounds (mass). With no change in mass,
the force of gravity at 350 km would be, according to Eqn (1.36),

W … 239;255 lbðforceÞ �

0

B@
1

1 þ
350

6378

1

CA

2

… 215;000 lbðforceÞ

The integral of a force F over a time interval is called the impulse I of the force,

I …
Zt2

t1

F dt (1.39)

Impulse is a vector quantity. From Eqn (1.38) it is apparent that if the mass is constant, then

I net …
Zt2

t1

m
dv
dt

dt … mv2 � mv1 (1.40)

That is, the net impulse on a body yields a change mDv in its linear momentum, so that

Dv …
I net

m
(1.41)

If Fnet is constant, then I net … FnetDt, in which case Eqn (1.41) becomes

Dv …
Fnet

m
Dt ðif Fnetis constantÞ (1.42)
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Let us conclude this section by introducing the concept of angular momentum. The moment of the net
force about O in Figure 1.13 is

MOnet … r � Fnet

Substituting Eqn (1.38) yields

MOnet … r � ma … r � m
dv
dt

(1.43)

But, keeping in mind that the mass is constant,

r � m
dv
dt

…
d
dt

ðr � mvÞ �
�

dr
dt

� mv
�

…
d
dt

ðr � mvÞ � ðv � mvÞ

Since v � mv … m(v � v) … 0, it follows that Eqn (1.43) can be written

MOnet …
dHO

dt
(1.44)

where HO is the angular momentum about O,

HO … r � mv (1.45)

Thus, just as the net force on a particle changes its linear momentum mv, the moment of that force
about a fixed point changes the moment of its linear momentum about that point. Integrating Eqn
(1.44) with respect to time yields

Zt2

t1

MOnetdt … HO2 � HO1 (1.46)

The integral on the left is the net angular impulse. This angular impulse-momentum equation is the
rotational analog of the linear impulse-momentum relation given above in Eqn (1.40).

FIGURE 1.13

The absolute acceleration of a particle is in the direction of the net force.
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EXAMPLE 1.10
A particle of mass m is attached to point O by an inextensible string of length l, as illustrated in Figure 1.14.
Initially, the string is slack when m is moving to the left with a speed vo in the position shown. Calculate (a) the
speed of m just after the string becomes taut and (b) the average force in the string over the small time interval Dt
required to change the direction of the particle�s motion.

Solution
(a) Initially, the position and velocity of the particle are

r1 … ĉi þ d ĵ v1 … �vo î

The angular momentum about O is

H1 … r1 � mv1 …









î ĵ k̂
c d 0

�mvo 0 0








… mvodk̂ (a)

Just after the string becomes taut,

r2 … �
����������������
l2 � d2

p
î þ d ĵ v2 … vx î þ vy ĵ (b)

and the angular momentum is

H2 … r2 � mv2 …









î ĵ k̂
�

����������������
l2 � d2

p
d 0

vx vy 0








…

�
� mvx d � mvy

����������������
l2 � d2

p �
k̂ (c)

Initially, the force exerted on m by the slack string is zero. When the string becomes taut, the force exerted on m
passes through O. Therefore, the moment of the net force on m about O remains zero. According to Eqn (1.46),

H2 … H1

Substituting Eqns (a) and (c) yields

vxd þ
����������������
l2 � d2

p
vy … �vod (d)

The string is inextensible, so the component of the velocity of m along the string must be zero:

v2$r2 … 0

Substituting v2 and r2 from Eqn (b) and solving for vy, we get

vy … vx

���������������
l2

d2 � 1

s

(e)

FIGURE 1.14

Particle attached to O by an inextensible string.
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Solving Eqns (d) and (e) for vx and vy leads to

vx … �
d2

l2 vo vy … �

���������������

1 �
d2

l2

s
d
l

vo (f)

Thus, the speed, v …
�����������������
v2

x þ v2
y

q
, after the string becomes taut is

v …
d
l

vo

(b) From Eqn (1.40), the impulse on m during the time it takes the string to become taut is

I … mðv2 � v1Þ … m

2

4

0

@ �
d2

l2 vo î �

���������������

1 �
d2

l2

s
d
l

vo ĵ

1

A �
�

�vo î
�

3

5 …
�

1 �
d2

l2

�
mvo î �

���������������

1 �
d2

l2

s
d
l

mvo ĵ

The magnitude of this impulse, which is directed along the string, is

I …

���������������

1 �
d2

l2

s

mvo

Hence, the average force in the string during the small time interval Dt required to change the direction of the
velocity vector turns out to be

Favg …
I
Dt

…

���������������

1 �
d2

l2

s
mvo

Dt

1.6 Time derivatives of moving vectors
Figure 1.15(a) shows a vector A inscribed in a rigid body B that is in motion relative to an inertial
frame of reference (a rigid, Cartesian coordinate system, which is fixed relative to the fixed stars). The
magnitude of A is fixed. The body B is shown at two times, separated by the differential time interval
dt. At time t þ dt, the orientation of vector A differs slightly from that at time t, but its magnitude is the
same. According to one of the many theorems of the prolific eighteenth century Swiss mathematician
Leonhard Euler (1707–1783), there is a unique axis of rotation about which B, and therefore A, rotates
during the differential time interval. If we shift the two vectors A(t) and A(t þ dt) to the same point on
the axis of rotation, so that they are tail to tail as shown in Figure 1.15(b), we can assess the difference
dA between them caused by the infinitesimal rotation. Remember that shifting a vector to a parallel
line does not change the vector. The rotation of the body B is measured in the plane perpendicular to
the instantaneous axis of rotation. The amount of rotation is the angle dq through which a line element
normal to the rotation axis turns in the time interval dt. In Figure 1.15(b) that line element is the
component of A normal to the axis of rotation. We can express the difference dA between A(t) and
A(t þ dt) as

dA … ‰ðkAk$sin fÞ dq�
z������������}|������������{

magnitude of dA

n̂ (1.47)
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where n̂ is the unit normal to the plane defined by A and the axis of rotation, and it points in the
direction of the rotation. The angle f is the inclination of A to the rotation axis. By definition,

dq … kukdt (1.48)

where u is the angular velocity vector, which points along the instantaneous axis of rotation, and its
direction is given by the right-hand rule. That is, wrapping the right hand around the axis of rotation,
with the fingers pointing in the direction of dq, results in the thumb’s defining the direction of u. This
is evident in Figure 1.15(b). It should be pointed out that the time derivative of u is the angular ac-
celeration, usually given the symbol a. Thus,

a …
du
dt

(1.49)

Substituting Eqn (1.48) into Eqn (1.47), we get

dA … kAk$sin f$kukdt$n̂ … ðkuk$kAk$sin fÞn̂ dt (1.50)

By definition of the crossproduct, u � A is the product of the magnitude of u, the magnitude of A, the
sine of the angle between u and A, and the unit vector normal to the plane of u and A, in the rotation
direction. That is,

u � A … kuk$kAk$sin f$n̂ (1.51)

Substituting Eqn (1.51) into Eqn (1.50) yields

dA … u � Adt

Dividing through by dt, we finally obtain

dA
dt

… u � A
�

if
d
dt

kAk … 0
�

(1.52)

(a) (b)

FIGURE 1.15

Displacement of a rigid body.
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Equation (1.52) is a formula we can use to compute the time derivative of any vector of constant
magnitude.

EXAMPLE 1.11
Calculate the second time derivative of a vector A of constant magnitude, expressing the result in terms of u and its
derivatives and A.

Solution
Differentiating Eqn (1.52) with respect to time, we get

d2A
dt2 …

d
dt

dA
dt

…
d
dt

ðu � AÞ …
du
dt

� A þ u �
dA
dt

Using Eqns (1.49) and (1.52), this can be written

d2A
dt2 … a � A þ u � ðu � AÞ (1.53)

EXAMPLE 1.12
Calculate the third derivative of a vector A of constant magnitude, expressing the result in terms of u and its
derivatives and A.

Solution

d3A
dt3 …

d
dt

d2A
dt2 …

d
dt

‰a � A þ u � ðu � AÞ�

…
d
dt

ða � AÞ þ
d
dt

‰u � ðu � AÞ�

…
�

da
dt

� A þ a �
dA
dt

�
þ

�
du
dt

� ðu � AÞ þ u �
d
dt

ðu � AÞ
�

…
�
da
dt

� A þ a � ðu � AÞ
�

þ
�
a � ðu � AÞ þ u �

�
du
dt

� A þ u �
dA
dt

��

…
�
da
dt

� A þ a � ðu � AÞ
�

þ fa � ðu � AÞ þ u � ‰a � A þ u � ðu � AÞ�g

…
da
dt

� A þ a � ðu � AÞ þ a � ðu � AÞ þ u � ða � AÞ þ u � ‰u � ðu � AÞ�

…
da
dt

� A þ 2a � ðu � AÞ þ u � ða � AÞ þ u � ‰u � ðu � AÞ�

d3A
dt3 …

da
dt

� A þ 2a � ðu � AÞ þ u � ‰a � A þ u � ðu � AÞ�
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Let XYZ be a rigid inertial frame of reference and xyz a rigid moving frame of reference, as
shown in Figure 1.16. The moving frame can be moving (translating and rotating) freely on its
own accord, or it can be attached to a physical object, such as a car, an airplane, or a spacecraft.
Kinematic quantities measured relative to the fixed inertial frame will be called absolute (e.g.
absolute acceleration), and those measured relative to the moving system will be called relative
(e.g., relative acceleration). The unit vectors along the inertial XYZ system are Î, Ĵ, and K̂,
whereas those of the moving xyz system are î, ĵ, and k̂. The motion of the moving frame is
arbitrary, and its absolute angular velocity is U. If, however, the moving frame is rigidly attached
to an object, so that it not only translates but rotates with it, then the frame is called a body frame
and the axes are referred to as body axes. A body frame clearly has the same angular velocity as
the body to which it is bound.

Let B be any time-dependent vector. Resolved into components along the inertial frame of
reference, it is expressed analytically as

B … BX Î þ BY Ĵ þ BZK̂

where Bx, BY, and BZ are functions of time. Since Î, Ĵ, and K̂ are fixed, the time derivative of B is simply
given by

dB
dt

…
dBX

dt
Î þ

dBY

dt
Ĵ þ

dBZ

dt
K̂

dBX=dt, dBY=dt, and dBZ=dt are the components of the absolute time derivative of B.
B may also be resolved into components along the moving xyz frame, so that, at any

instant,

B … Bx̂i þ By ĵ þ Bzk̂ (1.54)

FIGURE 1.16

Fixed (inertial) and moving rigid frames of reference.
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Using this expression to calculate the time derivative of B yields

dB
dt

…
dBx

dt
î þ

dBy

dt
ĵ þ

dBz

dt
k̂ þ Bx

d̂i
dt

þ By
d̂j
dt

þ Bz
dk̂
dt

(1.55)

The unit vectors î, ĵ, and k̂ are not fixed in space but are continuously changing direction; therefore,
their time derivatives are not zero. They obviously have a constant magnitude (unity) and, being
attached to the xyz frame, they all have the angular velocity U. It follows from Eqn (1.52) that

d̂i
dt

… U � î
d̂j
dt

… U � ĵ
dk̂
dt

… U � k̂

Substituting these on the right-hand side of Eqn (1.55) yields

dB
dt … dBx

dt î þ dBy
dt ĵ þ dBz

dt k̂ þ Bx

�
U � î

�
þ By

�
U � ĵ

�
þ Bz

�
U � k̂

�

… dBx
dt î þ dBy

dt ĵ þ dBz
dt k̂ þ

�
U � Bx̂i

�
þ

�
U � By ĵ

�
þ

�
U � Bzk̂

�

… dBx
dt î þ dBy

dt ĵ þ dBz
dt k̂ þ U �

�
Bx̂i þ Byĵ þ Bzk̂

�

In view of Eqn (1.54), this can be written as

dB
dt

…
dB
dt

�

rel
þ U � B (1.56)

where

dB
dt

�

rel
…

dBx

dt
î þ

dBy

dt
ĵ þ

dBz

dt
k̂ (1.57)

dB=dtÞrel is the time derivative of B relative to the moving frame. Equation (1.56) shows how the
absolute time derivative is obtained from the relative time derivative. Clearly, dB=dt … dB=dtÞrel only
when the moving frame is in pure translation (U…0).

Equation (1.56) can be used recursively to compute higher order time derivatives. Thus, differ-
entiating Eqn (1.56) with respect to t, we get

d2B
dt2

…
d
dt

dB
dt

�

rel
þ

dU
dt

� B þ U �
dB
dt

Using Eqn (1.56) in the last term yields

d2B
dt2

…
d
dt

dB
dt

�

rel
þ

dU
dt

� B þ U �
�
dB
dt

�

rel
þ U � B

�
(1.58)

Equation (1.56) also implies that

d
dt

dB
dt

�

rel
…

d2B
dt2

�

rel
þ U �

dB
dt

�

rel
(1.59)
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where

d2B
dt2

�

rel
…

d2Bx

dt2
î þ

d2By

dt2
ĵ þ

d2Bz

dt2
k̂

Substituting Eqn (1.59) into Eqn (1.58) yields

d2B
dt2

…
�
d2B
dt2

�

rel
þ U �

dB
dt

�

rel

�
þ

dU
dt

� B þ U �
�
dB
dt

�

rel
þ U � B

�
(1.60)

Collecting terms, this becomes

d2B
dt2

…
d2B
dt2

�

rel
þ _U � B þ U � ðU � BÞ þ 2U �

dB
dt

�

rel

where _UhdU=dt is the absolute angular acceleration of the xyz frame.

Formulas for higher order time derivatives are found in a similar fashion.

1.7 Relative motion
Let P be a particle in arbitrary motion. The absolute position vector of P is r and the position of P
relative to the moving frame is rrel. If ro is the absolute position of the origin of the moving frame, then
it is clear from Figure 1.17 that

r … ro þ rrel (1.61)

Since rrel is measured in the moving frame,

rrel … x̂i þ ŷj þ zk̂ (1.62)

where x, y, and z are the coordinates of P relative to the moving reference.

FIGURE 1.17

Absolute and relative position vectors.
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The absolute velocity v of P is dr/dt, so that from Eqn (1.61) we have

v … vo þ
drrel
dt

(1.63)

where vo … dro/dt is the (absolute) velocity of the origin of the xyz frame. From Eqn (1.56), we can
write

drrel

dt
… vrel þ U � rrel (1.64)

where vrel is the velocity of P relative to the xyz frame:

vrel …
drrel
dt

�

rel
…

dx
dt

î þ
dy
dt

ĵ þ
dz
dt

k̂ (1.65)

Substituting Eqn (1.64) into Eqn (1.63) yields

v … vo þ U � rrel þ vrel (1.66)

The absolute acceleration a of P is dv/dt, so that from Eqn (1.63) we have

a … ao þ
d2rrel

dt2
(1.67)

where ao … dvo/dt is the absolute acceleration of the origin of the xyz frame. We evaluate the second
term on the right using Eqn (1.60).

d2rrel
dt2

…
d2rrel
dt2

�

rel
þ _U � rrel þ U � ðU � rrelÞ þ 2U �

drrel
dt

�

rel
(1.68)

Since vrel … drrel/dt)rel and arel … d2rrel=dt2Þrel, this can be written

d2rrel

dt2
… arel þ _U � rrel þ U � ðU � rrelÞ þ 2U � vrel (1.69)

Upon substituting this result into Eqn (1.67), we find

a … ao þ _U � rrel þ U � ðU � rrelÞ þ 2U � vrel þ arel (1.70)

The crossproduct 2U � vrel is called the Coriolis acceleration after Gustave Gaspard de Coriolis
(1792–1843), the French mathematician who introduced this term (Coriolis, 1835). Because of the
number of terms on the right, Eqn (1.70) is sometimes referred to as the five-term acceleration
formula.

EXAMPLE 1.13
At a given instant, the absolute position, velocity, and acceleration of the origin O of a moving frame are

ro … 100̂I þ 200Ĵ þ 300K̂ðmÞ

vo … �50̂I þ 30Ĵ � 10K̂ðm=sÞ

ao … �15̂I þ 40Ĵ þ 25K̂
�
m=s2	

�
given

	
(a)
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The angular velocity and acceleration of the moving frame are

U … 1:0̂I � 0:4Ĵ þ 0:6K̂ðrad=sÞ

_U … �1:0̂I þ 0:3Ĵ � 0:4K̂
�
rad=s2	�

given
	 (b)

The unit vectors of the moving frame are

î … 0:5571̂I þ 0:7428̂J þ 0:3714K̂
ĵ … �0:06331̂I þ 0:4839Ĵ � 0:8728K̂
k̂ … �0:8280̂I þ 0:4627Ĵ þ 0:3166K̂

�
given

	
(c)

The absolute position, velocity, and acceleration of P are

r … 300̂I � 100Ĵ þ 150K̂ðmÞ
v … 70̂I þ 25Ĵ � 20K̂ðm=sÞ
a … 7:5̂I � 8:5Ĵ þ 6:0K̂

�
m=s2	

�
given

	
(d)

Find (a) the velocity vrel and (b) the acceleration arel of P relative to the moving frame.

Solution
Let us �rst use Eqns (c) to solve for Î, Ĵ, and K̂ in terms of î, ĵ, and k̂ (three equations in three unknowns):

Î … 0:5571̂i � 0:06331̂j � 0:8280k̂

Ĵ … 0:7428̂i þ 0:4839̂j þ 0:4627k̂

K̂ … 0:3714̂i � 0:8728̂j þ 0:3166k̂

(e)

(a) The relative position vector is

rrel … r � ro …
�

300̂I � 100Ĵ þ 150K̂
�

�
�

100̂I þ 200Ĵ þ 300K̂
�

… 200̂I � 300Ĵ � 150K̂ðmÞ (f)

From Eqn (1.66), the relative velocity vector is
vrel … v � vo � U � rrel

…
�

70̂I þ 25Ĵ � 20K̂
�

�
�

� 50̂I þ 30Ĵ � 10K̂
�

�









Î Ĵ K̂
1:0 �0:4 0:6
200 �300 �150









…
�

70̂I þ 25Ĵ � 20K̂
�

�
�

� 50̂I þ 30Ĵ � 10K̂
�

�
�

240̂I þ 270Ĵ � 220K̂
�

or

vrel … �120̂I � 275Ĵ þ 210K̂ðm=sÞ (g)

To obtain the components of the relative velocity along the axes of the moving frame, substitute Eqns (e) into
Eqn (g).

vrel … �120
�

0:5571̂i � 0:06331̂j � 0:8280k̂
�

�275
�

0:7428̂i þ 0:4839̂j þ 0:4627k̂
�

þ 210
�

0:3714̂i � 0:8728̂j þ 0:3166k̂
�

so that

vrel … �193:1̂i � 308:8̂j þ 38:60k̂ðm=sÞ (h)

Alternatively, in terms of the unit vector ûv in the direction of vrel,

vrel … 366:2ûv ðm=sÞ; where ûv … �0:5272̂i � 0:8432̂j þ 0:1005k̂ (i)
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(b) To �nd the relative acceleration, we use the �ve-term acceleration formula, Eqn (1.70):

arel … a � ao � _U � rrel � U � ðU � rrelÞ � 2ðU � vrelÞ

… a � ao �










Î Ĵ K̂
�1:0 0:3 �0:4
200 �300 �150









� U �










Î Ĵ K̂
1:0 �0:4 0:6
200 �300 �150









� 2










Î Ĵ K̂
1:0 �0:4 0:6

�120 �275 210










… a � ao �
�

� 165̂I � 230Ĵ þ 240K̂
�

�










Î Ĵ K̂
1:0 �0:4 0:6
240 270 �220









�

�
162̂I � 564Ĵ � 646K̂

�

…
�

7:5̂I � 8:5Ĵ þ 6K̂
�

�
�

� 15̂I þ 40Ĵ þ 25K̂
�

�
�

� 165̂I � 230Ĵ þ 240K̂
�

�
�

� 74̂I þ 364Ĵ þ 366K̂
�

�
�

162̂I � 564Ĵ � 646K̂
�

arel … 99:5̂I þ 381:5Ĵ þ 21:0K̂
�

m=s2
�

(j)

The components of the relative acceleration along the axes of the moving frame are found by substituting Eqns (e)
into Eqn (j):

arel … 99:5
�

0:5571̂i � 0:06331̂j � 0:8280k̂
�

þ381:5
�

0:7428̂i þ 0:4839̂j þ 0:4627k̂
�

þ 21:0
�

0:3714̂i � 0:8728̂j þ 0:3166k̂
�

arel … 346:6i þ 160:0j þ 100:8k
�

m=s2
�

(k)

Or, in terms of the unit vector ûa in the direction of arel,

arel … 394:8ûa

�
m=s2

�
; where ûa … 0:8778̂i þ 0:4052̂j þ 0:2553k̂ (l)

Figure 1.18 shows the nonrotating inertial frame of reference XYZ with its origin at the center C of the
earth, which we shall assume to be a sphere. That assumption will be relaxed in Chapter 5. Embedded in
the earth and rotating with it is the orthogonal x0y0z0 frame, also centered at C, with the z0 axis parallel to
Z, the earth’s axis of rotation. The x0 axis intersects the equator at the prime meridian (zero degrees
longitude), which passes through Greenwich in London, England. The angle between X and x0 is qG, and
the rate of increase of qG is just the angular velocity U of the earth. P is a particle (e.g., an airplane,
spacecraft), which is moving in an arbitrary fashion above the surface of the earth. rrel is the position
vector of P relative to C in the rotating x0y0z0 system. At a given instant, P is directly over point O, which
lies on the earth’s surface at longitude L and latitude f. Point O coincides instantaneously with the
origin of what is known as a topocentric-horizon coordinate system xyz. For our purposes, x and y are
measured positive eastward and northward along the local latitude and meridian, respectively, through
O. The tangent plane to the earth’s surface at O is the local horizon. The z-axis is the local vertical
(straight up), and it is directed radially outward from the center of the earth. The unit vectors of the xyz
frame are î̂jk̂, as indicated in Figure 1.18. Keep in mind that O remains directly below P, so that as P
moves, so do the xyz axes. Thus, the î̂jk̂ triad, which comprises the unit vectors of a spherical coordinate
system, varies in direction as P changes location, thereby accounting for the curvature of the earth.
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FIGURE 1.18

Earth-centered inertial frame (XYZ); earth-centered noninertial x0y0z0 frame embedded in and rotating with the
earth; and a noninertial, topocentric-horizon frame xyz attached to a point O on the earth’s surface.

Let us find the absolute velocity and acceleration of P. It is convenient to first obtain the velocity
and acceleration of P relative to the nonrotating earth, and then use Eqns (1.66) and (1.70) to calculate
their inertial values.

The relative position vector can be written
rrel … ðRE þ zÞk̂ (1.71)

where RE is the radius of the earth and z is the height of P above the earth (i.e., its altitude). The time
derivative of rrel is the velocity vrel relative to the nonrotating earth,

vrel …
drrel

dt
… _zk̂ þ ðRE þ zÞ

dk̂
dt

(1.72)

To calculate dk̂=dt, we must use Eqn (1.52). The angular velocity u of the xyz frame relative to the
nonrotating earth is found in terms of the rates of change of latitude f and longitude L,

u … � _f̂i þ _Lcos fĵ þ _Lsin fk̂ (1.73)

Thus,
dk̂
dt

… u � k̂ … _Lcosf̂i þ _fĵ (1.74)
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Let us also record the following for future use:
d̂j
dt

… u � ĵ … � _Lsin f̂i � _fk̂ (1.75)

d̂i
dt

… u � î … _Lsin fĵ � _Lcos fk̂ (1.76)

Substituting Eqn (1.74) into Eqn (1.72) yields
vrel … _x̂i þ _ŷj þ _zk̂ (1.77a)

where
_x … ðRE þ zÞ _Lcos f _y … ðRE þ zÞ _f (1.77b)

It is convenient to use these results to express the rates of change of latitude and longitude in terms of
the components of relative velocity over the earth’s surface,

_f …
_y

RE þ z
_L …

_x
ðRE þ zÞcos f

(1.78)

The time derivatives of these two expressions are

€f …
ðRE þ zÞ€y � _y _z

ðRE þ zÞ2
€L …

ðRE þ zÞ€xcos f � ð _zcos f � _ysin fÞ _x
ðRE þ zÞ2cos2f

(1.79)

The acceleration of P relative to the nonrotating earth is found by taking the time derivative of vrel.
From Eqn (1.77) we thereby obtain

arel … €x̂i þ €ŷj þ €zk̂ þ _x
d̂i
dt

þ _y
d̂j
dt

þ _z
dk̂
dt

…

_z _Lcos f þ ðRE þ zÞ €Lcos f � ðRE þ zÞ _f _Lsin f

�̂
i þ


_z _f þ ðRE þ zÞ€f

�̂
j þ €zk̂

þðRE þ zÞ _Lcos f
�

u � î
�

þ ðRE þ zÞ _f
�

u � ĵ
�

þ _z
�

u � k̂
�

Substituting Eqn (1.74) through Eqn (1.76) together with Eqns (1.78) and (1.79) into this expression
yields, upon simplification,

arel …
�

€x þ
_xð _z � _ytan fÞ

RE þ z

�
î þ

�
€y þ

_y _z þ _x2tan f
RE þ z

�
ĵ þ

�
€z �

_x2 þ _y2

RE þ z

�
k̂ (1.80)

Observe that the curvature of the earth’s surface is neglected by letting RE þ z become infinitely large,
in which case

arelÞneglecting earth’s curvature … €x̂i þ €ŷj þ €zk̂

That is, for a “flat earth,” the components of the relative acceleration vector are just the derivatives of
the components of the relative velocity vector.

For the absolute velocity we have, according to Eqn (1.66),
v … vC þ U � rrel þ vrel (1.81)
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From Figure 1.18, it can be seen that K̂ … cos fĵ þ sin fk̂, which means the angular velocity of the
earth is

U … UK̂ … U cos fĵ þ U sin fk̂ (1.82)

Substituting this, together with Eqns (1.71) and (1.77a) and the fact that VC … 0, into Eqn (1.81) yields

v … ‰ _x þ UðRE þ zÞcos f�̂i þ _ŷj þ _zk̂ (1.83)

From Eqn (1.70) the absolute acceleration of P is

a … aC þ _U � rrel þ U � ðU � rrelÞ þ 2U � vrel þ arel

Since aC … _U … 0, we find, upon substituting Eqns (1.71), (1.77a), (1.80), and (1.82), that

a …
�
€x þ

_xð _z � _ytan fÞ
RE þ z

þ 2Uð _z cos f � _y sin fÞ
�
î

þ
�

€y þ
_y _z þ _x2tan f

RE þ z
þ U sin f‰UðRE þ zÞcos f þ 2 _x�

�
ĵ

þ
�

€z �
_x2 þ _y2

RE þ z
� U cos f‰UðRE þ zÞcos f þ 2 _x�

�
k̂

(1.84)

Some special cases of Eqns (1.83) and (1.84) follow.
Straight and level, unaccelerated flight: _z … €z … €x … €y … 0

v … ‰ _x þ UðRE þ zÞcos f�̂i þ _ŷj (1.85a)

a … �
�

_x _ytan f
RE þ z

þ 2U _ysin f
�
î þ

�
_x2tan f
RE þ z

þ U sin f‰UðRE þ zÞcos f þ 2 _x�
�

ĵ

�
�

_x2 þ _y2

RE þ z
þ U cos f‰UðRE þ zÞcos f þ 2 _x�

�
k̂

(1.85b)

Flight due north (y) at a constant speed and altitude: _z … €z … _x … €x … €y … 0

v … UðRE þ zÞcos f̂i þ _ŷj (1.86a)

a … �2U _y sin f̂i þ U2ðRE þ zÞsin f cos fĵ �
�

_y2

RE þ z
þ U2ðRE þ zÞcos2f

�
k̂ (1.86b)

Flight due east (x) at a constant speed and altitude: _z … €z … €x … _y … €y … 0

v … ‰ _x þ UðRE þ zÞcos f�̂i (1.87a)

a …
�

_x2tan f
RE þ z

þ U sin f‰UðRE þ zÞcos f þ 2 _x�
�

ĵ

�
�

_x2

RE þ z
þ U cos f‰UðRE þ zÞcos f þ 2 _x�

�
k̂

(1.87b)
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Flight straight up (z): _x … €x … _y … €y … 0

v … UðRE þ zÞcos f̂i þ _zk̂ (1.88a)

a … 2Uð _zcos fÞ̂i þ U2ðRE þ zÞsin f cos fĵ þ

€z � U2ðRE þ zÞcos2f

�
k̂ (1.88b)

Stationary: _x … €x … _y … €y … _z … €z … 0

v … UðRE þ zÞcos f̂i (1.89a)

a … U2ðRE þ zÞsin f cos fĵ � U2ðRE þ zÞcos2fk̂ (1.89b)

EXAMPLE 1.14
An airplane of mass 70,000 kg is traveling due north at a latitude 30�north, at an altitude of 10 km (32,800 ft),
with a speed of 300 m/s (671 mph). Calculate (a) the components of the absolute velocity and acceleration along
the axes of the topocentric-horizon reference frame and (b) the net force on the airplane.

Solution
(a) First, using the sidereal rotation period of the earth in Table A.1, we note that the earth�s angular velocity is

U …
2p radians

sidereal day
…

2p radians
23:93 h

…
2p radians
86; 160 s

… 7:292 � 10�5 radians=s

From Eqn (1.86a), the absolute velocity is

v … UðRE þ zÞcos f̂i þ _y ĵ …
h�

7:292 � 10�5
�

$ð6378 þ 10Þ$103cos 30�
i
î þ 300̂j

or

v … 403:4̂i þ 300̂j ðm=sÞ

The 403.4 m/s (901 mph) component of velocity to the east (x-direction) is due entirely to the earth�s rotation.
From Eqn (1.86b), the absolute acceleration is

a … �2U _ysin f̂i þ U2ðRE þ zÞsin f cos f̂j �
� _y2

RE þ z
þ U2ðRE þ zÞcos2f

�
k̂

… �2
�
7:292 � 10�5	

$300$sin 30� î

þ
�
7:292 � 10�5	2$ð6378 þ 10Þ$103$sin30�$cos30� ĵ

�
�

3002

ð6378 þ 10Þ$103 þ
�
7:292 � 10�5	2$ð6378 þ 10Þ$103$cos230�

�
k̂

or

a … �0:02187̂i þ 0:01471̂j � 0:03956k̂
�

m=s2
�

The westward (negative x) acceleration of 0:02187 m=s2 is the Coriolis acceleration.

(b) Since the acceleration in part (a) is the absolute acceleration, we can use it in Newton�s law to calculate the net
force on the airplane,

Fnet … ma … 70 000
�

� 0:02187̂i þ 0:01471̂j � 0:03956k̂
�

… �1531̂i þ 1029̂j � 2769k̂ðNÞ
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Figure 1.19 shows the components of this relatively small force. The forward (y) and downward (negative z) forces
are in the directions of the airplane�s centripetal acceleration, caused by the earth�s rotation and, in the case of the
downward force, by the earth�s curvature as well. The westward force is in the direction of the Coriolis acceleration,
which is due to the combined effects of the earth�s rotation and the motion of the airplane. These net external
forces must exist if the airplane is to �y in the prescribed path.

In the vertical direction, the net force is that of the upward lift L of the wings plus the downward weight W of
the aircraft, so that

FnetÞz … L � W … �2769 0 L … W � 2769 N

Thus, the effect of the earth�s rotation and curvature is to apparently produce an outward centrifugal force,
reducing the weight of the airplane a bit, in this case by about 0.4%. The �ctitious centrifugal force also increases
the apparent drag in the �ight direction by 1029 N. That is, in the �ight direction

FnetÞy … T � D … 1029 N

where T is the thrust and D is the drag. Hence

T … D þ 1029ðNÞ

The 1531 N force to the left, produced by crabbing the airplane very slightly in that direction, is required to
balance the �ctitious Coriolis force, which would otherwise cause the airplane to deviate to the right of its �ight
path.

1.8 Numerical integration
Analysis of the motion of a spacecraft leads to ordinary differential equations with time as the in-
dependent variable. It is often impractical if not impossible to solve them exactly. Therefore, the ability

FIGURE 1.19

Components of the net force on the airplane.
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to solve differential equations numerically is important. In this section, we will take a look at a few
common numerical integration schemes and investigate their accuracy and stability by applying them
to some problems, which do have an analytical solution.

Particle mechanics is based on Newton’s second law (Eqn (1.38)), which may be written as

€r …
F
m

(1.90)

This is a second-order, ordinary differential equation for the position vector r as a function of time.
Depending on the complexity of the force function F, there may or may not be a closed form, analytical
solution of Eqn (1.90). In the most trivial case, the force vector F and the mass m are constant, which
means we can use elementary calculus to integrate Eqn (1.90) twice to get

r …
F

2m
t2 þ C1t þ C2 ðF and m constantÞ (1.91)

C1 and C2 are the two vector constants of integration. Since each vector has three components, there
are a total of six scalar constants of integration. If the position and velocity are both specified at time
t … 0 to be r0 and _r0, respectively, then we have an initial value problem. Applying the initial con-
ditions to Eqn (1.91), we find C1 … _r0 and C2 … r0, which means

r …
F

2m
t2 þ _r0t þ r0 ðF and m constantÞ

On the other hand, we may know the position r0 at t … 0 and the velocity _rf at a later time t … tf. These
are boundary conditions and this is an example of a boundary value problem. Applying the boundary

conditions to Eqn (1.91) yields C1 … _rf �
F
m

tf and C2 … r0, which means

r …
F

2m
t2 þ

�
_rf �

F
m

tf
�

t þ r0 ðF and m constantÞ

For the remainder of this section we will focus on the numerical solution of initial value problems only.
In general, the function F in Eqn (1.90) is not constant but is instead a function of time t, position r,

and velocity _r. That is, F … Fðt; r; _rÞ. Let us resolve the vector r and its derivatives as well as the force
F into their Cartesian components in three-dimensional space:

r … x̂i þ ŷj þ zk̂ _r … _x̂i þ _ŷj þ _zk̂ €r … €x̂i þ €ŷj þ €zk̂ F … Fx̂i þ Fy ĵ þ Fzk̂

The three components of Eqn (1.90) are

€x …
Fxðt; r; _rÞ

m
€y …

Fyðt; r; _rÞ
m

€z …
Fzðt; r; _rÞ

m
(1.92)

These are three uncoupled second-order differential equations. For the purpose of numerical solution,
they must be reduced to six first-order differential equations. This is accomplished by introducing six
auxiliary variables y1 through y6, defined as follows:

y1 … x y2 … y y3 … z
y4 … _x y5 … _y y6 … _z (1.93)
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In terms of these auxiliary variables, the position and velocity vectors are

r … y1̂i þ y2 ĵ þ y3k̂ _r … y4̂i þ y5 ĵ þ y6k̂

Taking the derivative d/dt of each of the six expressions in Eqn (1.93) yields
dy1

dt
… _x

dy2

dt
… _y

dy3

dt
… _z

dy4

dt
… €x

dy5
dt

… €y
dy6
dt

… €z

Upon substituting Eqns (1.92) and (1.93), we arrive at the six first-order differential equations

_y1 … y4

_y2 … y5

_y3 … y6

_y4 …
Fxðt; y1; y2; y3; y4; y5; y6Þ

m

_y5 …
Fyðt; y1; y2; y3; y4; y5; y6Þ

m

_y6 …
Fzðt; y1; y2; y3; y4; y5; y6Þ

m

(1.94)

These equations are coupled because the right side of each one contains variables, which belong to
other equations as well. Equation (1.94) can be written more compactly in vector notation as

_y … fðt; yÞ (1.95)

where the column vectors y, _y, and f are

y …

8
>>>>>><

>>>>>>:

y1
y2
y3
y4
y5
y6

9
>>>>>>=

>>>>>>;

_y …

8
>>>>>><

>>>>>>:

_y1
_y2
_y3
_y4
_y5
_y6

9
>>>>>>=

>>>>>>;

f …

8
>>>>>><

>>>>>>:

y4
y5
y6

Fxðt; yÞ=m
Fyðt; yÞ=m
Fzðt; yÞ=m

9
>>>>>>=

>>>>>>;

(1.96)

Note that in this case f(t,y) is shorthand for f(t,y1,y2,y3,y4,y5,y6). Any set of one or more ordinary
differential equations of any order can be cast in the form of Eqn (1.95).

EXAMPLE 1.15
Write the nonlinear differential equation

0x � x €x þ _x2 … 0 (a)

as three �rst-order differential equations.

Solution
Introducing the three auxiliary variables

y1 … x y2 … _x y3 … €x (b)
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we take the derivative of each one to get

dy1=dt … dx=dt … _x
dy2=dt … d _x=dt … €x

dy3=dt … d€x=dt … x
0

…
z}|{

From ðaÞ

x €x � _x2

Substituting Eqn (b) on the right of these expressions yields

_y1 … y2
_y2 … y3
_y3 … y1y3 � y2

2

(c)

This is a system of three �rst-order, coupled ordinary differential equations. It is an autonomous system, since time
t does not appear explicitly on the right side. The three equations can therefore be written compactly as _y … fðyÞ.

Before discussing some numerical integration schemes, it will be helpful to review the concept of
the Taylor series, named after the English mathematician Brook Taylor (1685–1731). Recall from
calculus that if we know the value of a function g(t) at time t and wish to approximate its value at a
neighboring time t þ h, we can use the Taylor series to express g(t þ h) as an infinite power series
in h,

gðt þ hÞ … gðtÞ þ c1h þ c2h2 þ c3h3 þ / þ cnhn þ O
�
hnþ1	

(1.97)

The coefficients cm are found by taking successively higher order derivatives of g(t) according to the
formula

cm …
1
m!

dmgðtÞ
dtm

(1.98)

O(hnþ1) (“order of h to the n þ 1”) means that the remaining terms of this infinite series all have hnþ1

as a factor. In other words,

lim
h/0

O
�
hnþ1	

hnþ1 … cnþ1

O(hnþ1) is the truncation error due to retaining only terms up to hn. The order of a Taylor series
expansion is the highest power of h retained. The more terms of the Taylor series that we keep, the more
accurate will be the representation of the function g(t þ h) in the neighborhood of t. Reducing h lowers
the truncation error. For example, if we reduce h to h/2, then O(hn) goes down by a factor of (1/2)n.

EXAMPLE 1.16
Expand the function sin(t þ h) in a Taylor series about t … 1. Plot the Taylor series of order 1, 2, 3, and 4 and
compare it with sin(1 þ h) for �2< h <2.

Solution
The nth order Taylor power series expansion of sin (t þ h) is written

sin ðt þ hÞ … pnðhÞ
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where, according to Eqns (1.97) and (1.98), the polynomial pn is given by

pnðhÞ …
Xn

m…0

hm

m!
dmsin t

dtm

Thus, the zero through fourth-order Taylor series polynomials in h are

p0 …
h0

0!
d0sin t

dt0 … sin t

p1 … p0 þ
h
1!

dsin t
dt

… sin t þ h cos t

p2 … p1 þ
h2

2!
d2sin t

dt2 … sin t þ h cos t �
h2

2
sin t

p3 … p2 þ
h3

3!
d3sin t

dt3 … sin t þ h cos t �
h2

2
sin t �

h3

6
cos t

p4 … p3 þ
h4

4!
d4sin t

dt4 … sin t þ h cos t �
h2

2
sin t �

h3

6
cos t þ

h4

24
sin t

For t … 1, p1 through p4 as well as sin (t þ h) are plotted in Figure 1.20. As expected, we see that the higher degree
Taylor polynomials for sin (1 þ h) lie closer to sin (1 þ h) over a wider range of h.

The numerical integration schemes that we shall examine are designed to solve first-order ordinary
differential equations of the form shown in Eqn (1.95). To obtain a numerical solution of _y … fðt; yÞ
over the time interval t0 to tf, we divide or “mesh” the interval into N discrete times t1,t2,t3,/,tN, where
t1 … t0 and tN … tf. The step size h is the difference between two adjacent times on the mesh, that is,
h … tiþ1 � ti. The h may be constant for all steps across the entire time span t0 to tf. Recent methods
have adaptive step size control in which h varies from step to step to provide better accuracy and
efficiency.

FIGURE 1.20

Plots of zero- to fourth-order Taylor series expansions of sin (1 þ h).
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Let us denote the values of y and _y at time ti as yi and fi, respectively, where fi … f(ti,yi). In an initial
value problem, the values of all components of y at the initial time t0 together with Eqn (1.95) provide
the information needed to determine y at the subsequent discrete times.

RK method
The Runge–Kutta (“RK”) methods were originally developed by the German mathematicians Carle
Runge (1856–1927) and Martin Kutta (1867–1944). In the explicit, single-step RK methods, yiþ1 at
ti þ h is obtained from yi at ti by the formula

yiþ1 … yi þ hfðti; yi; hÞ (1.99)

The increment function f is an average of the derivative dy/dt over the time interval ti to ti þ h. This
average is obtained by evaluating the derivative f(t,y) at several points or “stages” within the time
interval. The order of an RK method reflects the accuracy to which f is computed, compared to a
Taylor series expansion. An RK method of order p is called an RKp method. An RKp method is as
accurate in computing yi from Eqn (1.99) as is the pth order Taylor series

yðti þ hÞ … yi þ c1h þ c2h2 þ / cphp (1.100)

An attractive feature of the RK schemes is that only the first derivative f(t,y) is required, and it is
available from the differential equation itself (Eqn (1.95)). By contrast, the pth order Taylor series
expansion in Eqn (1.100) requires computing all derivatives of y through order p.

The higher the RK order, the more stages there are and the more accurate is f. The number of
stages equals the order of the RK method if the order is <5. If the number of stages is s, then there are s
times ~t within the interval ti to ti þ h at which we evaluate the derivatives f(t,y). These times are given
by specifying numerical values of the nodes am in the expression

~tm … ti þ amh m … 1; 2; /; s

At each of these times the value of ~y is obtained by providing numerical values for the coupling
coefficients bmn in the formula

~ym … yi þ h
Xm�1

n…1
bmn~fn m … 1; 2; /; s (1.101)

The vector of derivatives ~fm is evaluated at stage m by substituting ~tm and ~ym into Eqn (1.95),
~fm … fð~tm; ~ymÞ m … 1; 2; /; s (1.102)

The increment function f is a weighted sum of the derivatives ~fm over the s stages within the time
interval ti to ti þ h,

f …
Xs

m…1
cm~fm (1.103)

The coefficients cm are known as the weights. Substituting Eqn (1.103) into Eqn (1.99) yields

yiþ1 … yi þ h
Xs

m…1
cm~fm (1.104)
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The numerical values of the coefficients am, bmn, and cm depend on which RK method is being used. It
is convenient to write these coefficients as arrays, so that

fag …

8
>><

>>:

a1
a2
«
as

9
>>=

>>;
‰b� …

2

664

b11
b21 b22
« « /

bs1 bs2 / bs;s�1

3

775 fcg …

8
>><

>>:

c1
c2
«
cs

9
>>=

>>;
ðs … the number of stagesÞ

(1.105)

[b] is undefined if s … 1. The nodes {a}, coupling coefficients [b], and weights {c} for a given RK
method are not necessarily unique, although research favors the choice of some sets over others.
Details surrounding the derivation of these coefficients as well as in-depth discussions of not only RK
but also the numerous other common numerical integration techniques may be found in numerical
analysis textbooks, such as Butcher (2001).

For RK orders 1–4, we list below the commonly used values of the coefficients (Eqn (1.105)), the
resulting formula for the derivatives ~f at each stage (Eqn (1.102)), and the formula for yiþ1 � yi (Eqn
(1.104)). These RK schemes all use a uniform step size h.

RK1 (Euler’s method)
fag … f0g fcg … f1g
~f1 … fðti; yiÞ
yiþ1 … yi þ h~f1

(1.106)

RK2 (Heun’s method)

fag …

(
0

1

)

‰b� …

"
0

1

#

fcg …

(
1=2

1=2

)

~f1 … fðti; yiÞ ~f2 … f
�
ti þ h; yi þ h~f1

	

yiþ1 … yi þ h
�

1
2
~f1 þ 1

2
~f2

�
(1.107)

RK3

fag …

8
>><

>>:

0

1=2

1

9
>>=

>>;
‰b� …

2

664

0 0

1=2 0

�1 2

3

775 fcg …

8
>><

>>:

1=6

2=3

1=6

9
>>=

>>;

~f1 … fðti; yiÞ ~f2 … f
�

ti þ
1
2

h; yi þ
1
2

h~f1

�
~f3 … f

�
ti þ h; yi þ h


� ~f1 þ 2~f2

�	

yiþ1 … yi þ h
�

1
6

~f1 þ
2
3

~f2 þ
1
6

~f3

�

(1.108)
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RK4

fag …

8
>>>>><

>>>>>:

0

1=2

1=2

1

9
>>>>>=

>>>>>;

‰b� …

2

666664

0 0 0

1=2 0 0

0 1=2 0

0 0 1

3

777775
fcg …

8
>>>>><

>>>>>:

1=6

1=3

1=3

1=6

9
>>>>>=

>>>>>;

~f1 … fðti; yiÞ ~f2 … f
�

ti þ
1
2

h; yi þ
1
2

h~f1

�
~f3 … f

�
ti þ

1
2

h; yi þ
1
2

h~f2

�
~f4 … f

�
ti þ h; yi þ h~f3

	

yiþ1 … yi þ h
�

1
6

~f1 þ
1
3

~f2 þ
1
3

~f3 þ
1
6

~f4

�
(1.109)

Observe that in each of the four cases the sum of the components of {c} is 1 and the sum of each row of
[b] equals the value in that row of {a}. This is a characteristic of the RK methods.

n
ALGORITHM 1.1
Given the vector y at time t, the derivatives f(t,y), and the step size h, use one of the methods RK1
through RK4 to find y at time t þ h. See Appendix D.2 for a MATLAB� implementation of this
algorithm in the form of the function rk1_4.m. rk1_4.m executes any of the four RK methods ac-
cording to whether the variable rk passed to the function has the value 1, 2, 3, or 4.
1. Evaluate the derivatives ~f1;~f2;.;~fs at stages 1 through s by means of Eqn (1.102).
2. Use Eqn (1.104) to compute yðt þ hÞ … yðtÞ þ h

Xs

m…1
cm~fm.

Repeat these steps to obtain y at subsequent times t þ 2h, t þ 3h, etc.
n

Let us employ the RK methods and Algorithm 1.1 to solve for the motion of the well-known viscously
damped spring-mass system pictured in Figure 1.21. The spring has an unstretched length l0 and a
spring constant k. The viscous damper coefficient is c and the mass of the block, which slides on a
frictionless surface, is m. A forcing function F(t) is applied to the mass. From the free body diagram in
part (c) of the figure, we obtain the equation of motion of this one-dimensional system in the
x-direction.

�Fs � Fd þ FðtÞ … m€x (1.110)

where Fs and Fd are the forces of the spring and dashpot, respectively. Since Fs … kx and Fd … c _x (Eqn
(1.110)) after dividing through by the mass, they can be rewritten as

€x þ
c
m

_x þ
k
m

x …
FðtÞ
m

(1.111)

The spring rate k and the mass m determine the natural circular frequency of vibration of the system,
un …

���������
k=m

p
(radians per second). Furthermore, the damping coefficient c may be expressed as
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(a)

(b) (c)

0

0

FIGURE 1.21

A damped spring-mass system with a forcing function applied to the mass. (a) At rest. (b) In motion under the
action of the applied force F(t). (c) Free body diagram at any instant.

c … 2zmun, where z is the dimensionless damping factor (z � 0). Making these substitutions in Eqn
(1.111), we get the standard form

€x þ 2zun _x þ u2
nx …

FðtÞ
m

(1.112)

If the forcing function is sinusoidal with amplitude F0 and circular frequency u, then Eqn (1.112)
becomes

€x þ 2zun _x þ u2
nx …

F0

m
sin ut (1.113)

This second-order ordinary differential equation has a closed form solution, which is found using
procedures taught in a differential equations course. If the system is underdamped, which means z < 1,
then it can be verified by substitution that the solution of Eqn (1.113) is

x … e�zuntðA sin udt þ B cos udtÞ þ
F0=m

�
u2

n � u2
	2 þ ð2uunzÞ2

�
u2

n � u2	
sin ut � 2uunz cos ut

�

(1.114a)

where ud … un
�������������
1 � z2

p
is the damped natural frequency. The initial conditions determine the values

of the coefficients A and B. If at t … 0, x … x0 and _x … _x0, it turns out that

A … z
un

ud
x0 þ

_x0

ud
þ

u2 þ
�
2z2 � 1

	
u2

n�
u2

n � u2
	2 þ ð2uunzÞ2

u
ud

F0

m

B … x0 þ
2uunz

�
u2

n � u2
	2 þ ð2uunzÞ2

F0

m

(1.114b)
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The transient term with the exponential factor in Eqn (1.114a) dies out eventually, leaving only the
steady-state solution, which persists as long as the forcing function acts.

EXAMPLE 1.17
Plot Eqn (1.114) from t … 0 to t … 110 s if m … 1 kg, un … 1 rad=s, z … 0:03, F0 … 1 N, u … 0:4 rad=s, and the
initial conditions are x … _x … 0.

Solution
Substituting the given values into Eqn (1.114) yields

x … e�0:03t ‰0:03399 cosð0:9995tÞ � 0:4750 sinð0:9995tÞ� þ ‰1:190 sinð0:4tÞ � 0:03399 cosð0:4tÞ�
(1.115)

This function is plotted over the time span 0e110 s in Figure 1.22. Observe that after about 80 s, the transient
has damped out and the system vibrates at the same frequency as the forcing function (although slightly out of
phase due to the small viscosity).

EXAMPLE 1.18
Solve Eqn (1.113) numerically, using the RK method and the data of Example 1.17. Compare the RK solution with
the exact one, given by Eqn (1.115).

Solution
We must �rst reduce Eqn (1.113) to two �rst-order differential equations by introducing the two auxiliary vari-
ables

y1 … xðtÞ (a)
y2 … _xðtÞ (b)

Differentiating Eqn (a) we �nd

_y1 … _xðtÞ … y2ðtÞ (c)

Differentiating Eqn (b) and using Eqn (1.113) yields

_y2 … €xðtÞ …
F0
m

sin ut � u2
ny1ðtÞ � 2zuny2ðtÞ (d)

FIGURE 1.22

Over time only the steady-state solution of Eqn (1.113) remains.
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Systems (c) and (d) can be written compactly in the standard vector notation as

_y … fðt ; yÞ (e)

where

y …
�

y1
y2

�
_y …

�
_y1
_y2

�
fðt; yÞ …

8
<

:

y2ðtÞ
F0
m sin ut � u2

ny1ðtÞ � 2zuny2ðtÞ

9
=

; (1.116)

Equation (1.116) is what we need to implement Algorithm 1.1 for this problem.
We will use the two MATLAB functions listed in Appendix D.2, namely, Example_1_18.m and rk1_4.m.

Example_1_18.m passes the data of Example 1.17 to the function rk1_4.m, which executes Algorithm 1.1 for

FIGURE 1.23

x/xmax vs t/tmax for the RK1 through RK4 solutions of Eqn (1.113) using the data of example 1.17. The exact
solution is at the top.
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RK1, RK2, RK3, and RK4 over the time interval from 0 s to 110 s. In each case, the problem is solved for two
different values of the time step h. The subfunction rates within Example_1_18.m calculates the derivatives f(t,y)
given in Eqn (1.116)3. The exact solution (Eqn (1.115)) along with the four RK solutions is nondimensionalized
and plotted at each time step in Figure 1.23.

We see that all of the RK solutions agree closely with the analytical one for a suf�ciently small step size. The
�gure shows, as expected, that to obtain accuracy, the uniform step size h must be reduced as the order of the RK
method is reduced. Likewise, the �gure suggests that a step size that yields inaccurate results for a one RK order
may work just �ne for the next higher order procedure.

Heun’s predictor–corrector method
As we have seen, the RK1 method (Eqn (1.106)) uses just ~f1, the derivative of y at the beginning of the
time interval, to approximate the value of y at the end of the interval. The use of Eqn (1.106) for
approximate numerical integration of nonlinear functions was introduced by Leonhard Euler in 1768
and is therefore known as Euler’s method. RK2 (Eqn (1.107)) improves the accuracy by using the
average of the derivatives ~f1 and ~f2 at each end of the time interval. The predictor–corrector method
due originally to the German mathematician Karl Heun (1859–1929) employs this idea.

First, we use RK1 to estimate the value of y at tiþ1, labeling that approximation y�
iþ1:

y�
iþ1 … yi þ hfðti; yiÞ ðpredictorÞ (1.117a)

y�
iþ1 is then used to compute the derivative f at ti þ h, whereupon the average of the two derivatives is

used to correct the estimate

yiþ1 … yi þ h
fðti; yiÞ þ fðti þ h; y�

iþ1Þ
2

ðcorrectorÞ (1.117b)

We can iteratively improve the estimate of yiþ1 by making the substitution y�
iþ1)yiþ1 (where )

means “is replaced by”) and computing a new value of yiþ1 from Eqn (1.117b). That process is
repeated until the difference between yiþ1 and y�

iþ1 becomes acceptably small.

n
ALGORITHM 1.2
Given the vector y at time t and the derivatives f(t,y), use Heun’s method to find y at time t þ h. See
Appendix D.3 for a MATLAB implementation of this algorithm (heun.m):
1. Evaluate the vector of derivatives f(t,y).
2. Compute the predictor y*(t þ h) … y(t) þ f(t,y)h.

3. Compute the corrector yðt þ hÞ … yðtÞ þ h
fðt; yÞ þ fðt þ h; y�ðt þ hÞÞ

2
.

4. Make the substitution y*(t þ h))y(t þ h) and use Step 3 to recompute y(t þ h).
5. Repeat Step 4 until y(t þ h) z y*(t þ h) to within a given tolerance.

Repeat these steps to obtain y at subsequent times t þ 2h, t þ 3h, etc.
n
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EXAMPLE 1.19
Employ Heun�s method to solve Eqn (1.113) using the data provided in Example 1.17. Use two different time
steps, h … 1 s and h … 0.1 s, and compare the results.

Solution
We use the MATLAB functions Example_1_19.m and heun.m listed in Appendix D.3. The function Exam-
ple_1_19.m passes the given data to the function heun.m, which uses the subfunction rates within Exam-
ple_1_19.m to compute the derivatives f(t,y) in Eqn (1.116)3. heun.m executes Algorithm 1.2 over the time
interval from 0 s to 110 s, once for h … 1 s and again for h … 0.1 s, and plots the output in each case, as illustrated
in Figure 1.24.

The graph shows that for h … 0.1 s, Heun�s method yields a curve identical to the exact solution (whereas the
RK1 method diverged for this time step in Figure 1.23). Even for the rather large time step h … 1 s, the Heun
solution, though it starts out a bit ragged, proceeds after 60 s (about the time the transient dies out) to settle down
and coincide thereafter very well with the exact solution. For this problem, Heun�s method is a decidedly better
choice than RK1 and competes with RK2 and RK3.

FIGURE 1.24

Numerical solution of Eqn (1.113) using Heun’s method with two different step sizes.
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RK with variable step size
Using a constant step size to integrate a differential equation can be inefficient. The value of h in
those regions where the solution varies slowly should be larger than in regions where the variation is
more rapid, which requires h to be small in order to maintain accuracy. Methods for automatically
adjusting the step size have been developed. They involve combining two adjacent-order RK
methods into one and using the difference between the higher and lower order solution to estimate the
truncation error in the lower order solution. The step size h is adjusted to keep the truncation error in
bounds.

A common example is the embedding of RK4 into RK5 to produce the RKF4(5) method. The F is
added in recognition of E. Fehlberg’s contribution to this extension of the RK method. The procedure
has six stages, and the Fehlberg coefficients are (Fehlberg, 1969)

fag …

8
>>>>>><

>>>>>>:

0
1=4
3=8

12=13
1

1=2

9
>>>>>>=

>>>>>>;

‰b� …

2

6666664

0 0 0 0 0
1=4 0 0 0 0
3=32 9=32 0 0 0

1932=2197 e7200=2197 7296=2197 0 0
439=216 e8 3680=513 e845=4104 0
e8=27 2 e3544=2565 1859=4104 e11=40

3

7777775

(1.118)

fc�g …

8
>>>>>><

>>>>>>:

25=216
0

1408=2565
2197=4104

�1=5
0

9
>>>>>>=

>>>>>>;

fcg …

8
>>>>>><

>>>>>>:

16=135
0

6656=12825
28561=56430

�9=50
2=55

9
>>>>>>=

>>>>>>;

(1.119)

Using asterisks to indicate that RK4 is the lower order of the two, we have from Eqn (1.104)

y�
iþ1 … yi þ h

�
c�

1
~f1 þ c�

2
~f2 þ c�

3
~f3 þ c�

4
~f4 þ c�

5
~f5 þ c�

6
~f6

	
Low order solution ðRK4Þ (1.120)

yiþ1 … yi þ h
�
c1~f1 þ c2~f2 þ c3~f3 þ c4~f4 þ c5~f5 þ c6~f6

	
High order solution ðRK5Þ (1.121)

where, from Eqns (1.100), (1.101), and (1.102), the derivatives at the six stages are
~f1 … fðti; yiÞ
~f2 … f

�
ti þ a2h; yi þ hb21~f1

	

~f3 … f
�
ti þ a3h; yi þ h


b31~f1 þ b32~f2

�	

~f4 … f
�
ti þ a4h; yi þ h


b41~f1 þ b42~f2 þ b43~f3

�	

~f5 … f
�
ti þ a5h; yi þ h


b51~f1 þ b52~f2 þ b53~f3 þ b54~f4

�	

~f6 … f
�
ti þ a6h; yi þ h


b61~f1 þ b62~f2 þ b63~f3 þ b64~f4 þ b65~f5

�	

(1.122)

Observe that, although the low and high order solutions have different weights ({c*} and {c},
respectively), they share the same nodes {a} and coupling coefficients [b] and, hence, the same
values of the derivatives ~f. This is another convenient feature of the Runge–Kutta–Fehlberg (RKF)
method.
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The truncation vector e is the difference between the higher order solution yiþ1 and the lower order
solution y�

iþ1,

e … yiþ1 � y�
iþ1

… h
�

c1 � c�
1
	~f1 þ

�
c2 � c�

2
	~f2 þ

�
c3 � c�

3
	~f3 þ

�
c4 � c�

4
	~f4 þ

�
c5 � c�

5
	~f5 þ

�
c6 � c�

6
	~f6

�

(1.123)

The number of components of e equals N, the number of first-order differential equations in the system
(e.g., three in Example 1.15 and two in Example 1.18). The scalar truncation error e is the largest of the
absolute values of the components of e,

e … maximum of the set ðje1j; je2j; je3j; /; jeN jÞ (1.124)

We set up a tolerance tol, which the truncation error cannot exceed. Instead of using the same h for
every step of the numerical integration process, we can adjust the step size so as to keep the error e
from exceeding tol. A simple strategy for adaptive step size control is to update h after each time step
using a formula, which is derived in, for example, Bond and Allman (1996),

hnew … hold

�
tol
e

� 1
pþ1

(1.125)

where p is the lower of the two orders in an RKFp(p þ 1) method. For RKF4(5), p … 4. According to
Eqn (1.125), if e>tol, then hnew < hold, whereas if e < tol, then hnew > hold. A factor b is commonly
added so that

hnew … holdb
�

tol
e

� 1
pþ1

(1.126)

where b may be 0.8 or 0.9, depending on the computer program.

n
ALGORITHM 1.3
Given the vector yi at time ti, the derivative functions f(t,y), the time step h, and the tolerance tol, use
the RKF4(5) method with adaptive step size control to find yiþ1 at time tiþ1. See Appendix D.4 for
rkf45.m, a MATLAB implementation of this algorithm.
1. Evaluate the derivatives ~f1 through ~f6 using Eqn (1.122).
2. Calculate the truncation vector using Eqn (1.123).
3. Compute the scalar truncation error e using Eqn (1.124).
4. If e>tol then replace h by hb(tol/e)1/5and return to Step 1.
5. Replace t by t þ h and calculate yiþ1 using Eqn (1.121).
6. Replace h by hb(tol/e)1/5.

Repeat these steps to obtain yiþ2, yiþ3, etc.
n
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EXAMPLE 1.20
A spacecraft S of mass m travels in a straight line away from the center C of the earth, as illustrated in Figure 1.25.
If at a distance of 6500 km from C its outbound velocity is 7.8 km/s, what will be its position and velocity 70 min
later?

Solution
Solving this problem requires writing down and then integrating the equations of motion. Starting with the
free body diagram of S shown in Figure 1.25, we �nd that Newton�s second law (Eqn (1.38)) for the
spacecraft is

�Fg … m€x (a)

The variable force of gravity Fg on the spacecraft is its mass m times the local acceleration of gravity, given by Eqn
(1.8). That is,

Fg … mg … m
g0R2

E
x2 (b)

RE is the earth�s radius (6378 km) and g0 is the sea-level acceleration of gravity (9.807 m/s2). Combining Eqns (a)
and (b) yields

€x þ
g0R2

E
x2 … 0 (1.127)

This differential equation for the rectilinear motion of the spacecraft has an analytical solution, which we shall
not go into here. Instead, we will solve it numerically using Algorithm 1.3 and the given initial conditions. For
that, we must as usual introduce the auxiliary variables y1 … x and y2 … x_ to obtain the two differential equa-
tions

_y1 … y2

_y2 … �
g0R2

E
y2

1

(c)

The initial conditions in this case are

y1ð0Þ … 6500 km y2ð0Þ … 7:8km=s2 (d)

The MATLAB programs Example_1_20.m and rkf45.m, both in Appendix D.4, were used to produce Figure 1.26,
which shows the position and velocity of the spacecraft over the requested time span. Example_1_20.m passes the
initial conditions and time span to rkf4.m, which uses the subroutine rates within Example_1_20.m to compute
the derivatives _x and €x.

FIGURE 1.25

Spacecraft S in rectilinear motion relative to the earth.
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Figure 1.26 reveals that the spacecraft takes 35 min to coast out to twice its original 6500 km distance from C
before reversing the direction and returning 35 min later to where it started with a speed of 7.8 km/s. The
nonuniform spacing between the solution points shows how rkf4.m controlled the step size so that h was smaller
during rapid variations of the solution but larger elsewhere.

PROBLEMS

Section 1.2
1.1 Given the three vectors A … Ax̂i þ Ay ĵ þ Azk̂, B … Bx̂i þ By ĵ þ Bzk̂, and C … Cx̂i þ Cy ĵ þ Czk̂,

show analytically that
(a) A$A … A2

(b) A$ðB � CÞ … ðA � BÞ$C ðinterchangeability of the ‘‘dot and ‘‘crossÞ
(c) A � ðB � CÞ … BðA$CÞ � CðA$BÞ ðthe bacecab ruleÞ
(Hint: Simply compute the expressions on each side of the … signs and demonstrate conclusively
that they are the same.) Do not substitute numbers to “prove” your point. Use Eqns (1.9) and (1.16).

Po
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n,

 k
m
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ci
ty

, k
m

/s

Time, min

Time, min

FIGURE 1.26

Position and velocity vs time. The solution points are circled.
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1.2 Use just the vector identities in Exercise 1.1 to show that

ðA � BÞ$ðC � DÞ … ðA$CÞðB$DÞ � ðA$DÞðB$CÞ

1.3 Let A … 8̂i þ 9̂j þ 12k̂, B … 9̂i þ 6̂j þ k̂, and C … 3̂i þ 5̂j þ 10k̂. Calculate the (scalar)
projection CAB of C onto the plane of A and B. See illustration below. (Hint: C2 … C2

n þ C2
AB.)

{Ans.: CAB … 11.58}

Section 1.3
1.4 Since ût and ûn are perpendicular and ût � ûn … ûb, use the bac–cab rule to show that ûn � ûb …

ût and ûn � ûb … ût, thereby verifying Eqn (1.29).
1.5 The x, y, and z coordinates (in meters) of a particle P as a function of time (in seconds) are

x … sin 3t, y … cos t, and z … sin 2t. At t … 3 s, determine:
(a) The velocity v, in Cartesian coordinates.
(b) The speed v.
(c) The unit tangent vector ût.
(d) The angles qx, qy, and qz that v makes with the x-, y-, and z-axes.
(e) The acceleration a in Cartesian coordinates.
(f) The unit binormal vector ûb.
(g) The unit normal vector ûn.
(h) The angles fx, fy, and that a makes with the x-, y-, and z-axes.
(i) The tangential component at of the acceleration.
(j) The normal component an of the acceleration.
(k) The radius of curvature of the path of P.
(l) The Cartesian coordinates of the center of curvature of the path.
{Partial Ans.: (b) 2.988 m/s; (d) qx … 139.7�; (j) an … 5.398 m/s2; (l) xC … �0.4068 m}

Section 1.4
1.6 An 80 kg man and 50 kg woman stand 0.5 m from each other. What is the force of gravitational

attraction between the couple?
{Ans.: 36.04 mN}
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1.7 If a person’s weight is W on the surface of the earth, calculate the earth’s gravitational pull on that
person at a distance equal to the moon’s orbit.
{Ans.: 275 � 10�6 W}

1.8 If a person’s weight is W on the surface of the earth, calculate what it would be, in terms of W, at
the surface of (a) the moon; (b) Mars; (c) Jupiter.
{Partial Ans.: (c) 2.53W}

Section 1.5
1.9 A satellite of mass m is in a circular orbit around the earth, whose mass is M. The orbital radius

from the center of the earth is r. Use Newton’s second law of motion, together with Eqns (1.25)
and (1.31), to calculate the speed v of the satellite in terms of M, r, and the gravitational
constant G.
{Ans.: v …

�������������
GM=r

p
}

1.10 If the earth takes 365.25 days to complete its circular orbit of radius 149.6 � 106 km around the
sun, use the result of Example 1.8 to calculate the mass of the sun.
{Ans.: 1.988 � 1030 kg}

Section 1.6
1.11 F is a force vector of fixed magnitude embedded on a rigid body in plane motion (in the xy

plane). At a given instant, u … 2k̂ rad=s, _u … �5k̂ rad=s2, €u … 3 k̂ rad=s3, and
F … ð15̂i þ 10̂jÞðNÞ. At that instant, calculate F0.
{Ans.: F0 … 500̂i þ 225̂j N=s3}

Section 1.7
1.12 The absolute position, velocity, and acceleration of O are

r0 … �16Î þ 84Ĵ þ 59 K̂ðmÞ
v0 … 7Î þ 9Ĵ þ 4 K̂ðm=sÞ
a0 … 3Î � 7Ĵ þ 4 K̂

�
m=s2	

The angular velocity and acceleration of the moving frame are

U … �0:8Î þ 0:7Ĵ þ 0:4K̂ðrad=sÞ _U … �0:4Î þ 0:9Ĵ � 1:0K̂
�
rad=s2	

The unit vectors of the moving frame are

î … �0:15617Î � 0:31235Ĵ þ 0:93704K̂
ĵ … �0:12940Î þ 0:94698Ĵ þ 0:29409K̂
k̂ … �0:97922Î � 0:075324Ĵ � 0:18831K̂
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The absolute position of P is

r … 51Î � 45Ĵ þ 36 K̂ðmÞ

The velocity and acceleration of P relative to the moving frame are

vrel … 31̂i � 68̂j � 77 k̂ðm=sÞ arel … 2̂i � 6̂j þ 5 k̂
�
m=s2	

Calculate the absolute velocity vP and acceleration aP of P.
{Ans.: vP … 156:4 ûvðm=sÞ; ûv … :7790Î � 0:3252Ĵ þ 0:5360K̂;
aP … 85:129ûa ðm=s2Þ; ûa … �0:3229Î þ 0:8284Ĵ � 0:4576K̂}

1.13 An airplane in level flight at an altitude h and a uniform speed v passes directly over a radar
tracking station A. Calculate the angular velocity _q and angular acceleration of the radar antenna
€q as well as the rate _r at which the airplane is moving away from the antenna. Use the equations
of this chapter (rather than polar coordinates, which you can use to check your work). Attach the
inertial frame of reference to the ground and assume a nonrotating earth. Attach the moving
frame to the antenna, with the x-axis pointing always from the antenna toward the airplane.
{Ans.: (a) _q … vcos2q=h, (b) €q … �2v2cos3q sin q=h2, (c) vrel … v sinq}
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1.14 At 30� north latitude, a 1000 kg (2205 lb) car travels due north at a constant speed of 100 km/h
(62 mph) on a level road at sea level. Taking into account the earth’s rotation, calculate the
lateral (sideways) force of the road on the car, and the normal force of the road on the car.
{Ans.: Flateral … 2:026 N; to the left ðwestÞ; N … 9784 N}

1.15 At 29� north latitude, what is the deviation d from the vertical of a plumb bob at the end of a
30 m string, due to the earth’s rotation?
{Ans.: 44.1 mm to the south}

Section 1.8
1.16 Verify by substitution that Eqn (1.114a) is the solution of Eqn (1.113).
1.17 Verify the Eqn (1.114b) is valid.
1.18 Numerically solve the fourth-order differential equation

zy þ 2€y þ y … 0

for y at t … 20, if the initial conditions are y … 1; _y … €y … y0 … 0 at t … 0.
{Ans.: y(20) … 9.60}

1.19 Numerically solve the differential equation

zy þ 3€y � 4 _y � 12y … te2t

for y at t … 3 if, at t … 0, y … _y … €y … 0.
{Ans.: y(3) … 66.6}

1.20 Numerically solve the differential equation

t€y þ t2 _y � 2y … 0

to obtain y at t … 4 if the initial conditions are y … 0 and _y … 1 at t … 1.
{Ans.: y(4) … 1.29}
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1.21 Numerically solve the system

_x þ
1
2

y � z … 0

�
1
2

x þ _y þ
1
���
2

p z … 0

1
2

x �
1
���
2

p y þ _z … 0

to obtain x, y, and z at t … 20. The initial conditions are x … 1 and y … z … 0 at t … 0.
{Ans.: x(20) … 0.704, y(20) … 0.665, z(20) … �0.246}

1.22 Use one of the numerical methods discussed in this section to solve Eqn (1.127) for the time
required for the moon to fall to the earth if it were somehow stopped in its orbit while the earth
remained fixed in space. (This will require a trial and error procedure known formally as a
shooting method. It is not necessary for this problem to code the procedure. Simply guess a time
and let the solver compute the final radius. On the basis of the deviation of that result from the
earth’s radius (6378 km), revise your time estimate and rerun the problem to compute a new final
radius. Repeat this process in a logical fashion until your time estimate yields a final radius that
is accurate to at least three significant figures.) Compare your answer with the analytical
solution,

t …
�������������r0

2g0R2
E

r �
p
4

r0 þ
������������������
rðr0 � rÞ

p
þ

r0

2
sin�1

�
r0 � 2r

r0

��

where t is the time, r0 is the initial radius, r is the final radius (r < r0), g0 is the sea-level ac-
celeration of earth’s gravity, and RE is the radius of the earth.

1.23 Use an RK solver such as rkf45 in Appendix D.4 or MATLAB’s ode45 to solve the nonlinear
Lorenz equations, due to the American meteorologist and mathematician E. N. Lorenz (1917–
2008):

_x … sðy � xÞ
_y … xðr � zÞ � y
_z … xy � bz

Start off by using the values Lorenz used in his paper (Lorenz, 1963): s … 10, b … 8/3, and
r … 28 and the initial conditions x … 0, y … 1, and z … 0 at t … 0. Let t range to a value of
�20. Plot the phase trajectory x … x(t), y … y(t), z … z(t) in 3D to see the now-famous “Lorenz
attractor.” The Lorenz equations are a simplified model of the two-dimensional convective
motion within a fluid layer due to a temperature difference DT between the upper and lower
surfaces. The equations are chaotic in nature. For one thing, this means that the solutions are
extremely sensitive to the initial conditions. A minute change yields a completely different
solution in the long run. Check this out yourself. (x represents the intensity of the convective
motion of the fluid, y is proportional to the temperature difference between rising and falling
fluid, and z represents the nonlinearity of the temperature profile across the depth. s is a fluid
property (the Prandtl number), r is proportional to DT, b is a geometrical parameter, and t is
a nondimensional time.)
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2.1 Introduction
This chapter presents the vector-based approach to the classical problem of determining the motion of
two bodies due solely to their own mutual gravitational attraction. We show that the path of one of the
masses relative to the other is a conic section (circle, ellipse, parabola, or hyperbola) whose shape is
determined by the eccentricity. Several fundamental properties of the different types of orbits are
developed with the aid of the laws of conservation of angular momentum and energy. These properties
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include the period of elliptical orbits, the escape velocity associated with parabolic paths, and the
characteristic energy of hyperbolic trajectories. Following the presentation of the four types of orbits,
the perifocal frame is introduced. This frame of reference is used to describe orbits in three di-
mensions, which is the subject of Chapter 4.

In this chapter, the perifocal frame provides the backdrop for developing the Lagrange f and g
coefficients. By means of the Lagrange f and g coefficients, the position and velocity on a trajectory
can be found in terms of the position and velocity at an initial time. These functions are needed in the
orbit determination algorithms of Lambert and Gauss presented in Chapter 5.

The chapter concludes with a discussion of the restricted three-body problem in order to provide a
basis for understanding the concepts of Lagrange points and the Jacobi constant. This material is
optional.

In studying this chapter, it would be well from time to time to review the road map provided in
Appendix B.

2.2 Equations of motion in an inertial frame
Figure 2.1 shows two-point masses acted upon only by the mutual force of gravity between them. The
positions R1 and R2 of their centers of mass are shown relative to an inertial frame of reference XYZ. In
terms of the coordinates of the two points

R1 … X1Î þ Y1Ĵ þ Z1K̂

R2 … X2Î þ Y2Ĵ þ Z2K̂
(2.1)

The origin O of the inertial frame may move with a constant velocity (relative to the fixed stars), but the
axes do not rotate. Each of the two bodies is acted upon by the gravitational attraction of the other. F12
is the force exerted on m1 by m2, and F21 is the force exerted on m2 by m1.

X

Z

O

r

Inertial frame of reference
(fixed with respect to the fixed stars)

G
R1

R2

RG m2

m1

ûr =
r
r

X

Z

O

R1

R2

m2

m1

F12

F21

(b)(a)
FIGURE 2.1

(a) Two masses located in an inertial frame. (b) Free-Body diagrams.
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The position vector RG of the center of mass G of the system in Figure 2.1(a) is defined by the
formula

RG …
m1R1 þ m2R2

m1 þ m2
(2.2)

Therefore, the absolute velocity and the absolute acceleration of G are

vG … _RG …
m1 _R1 þ m2 _R2

m1 þ m2
(2.3)

aG … �RG …
m1 �R1 þ m2 �R2

m1 þ m2
(2.4)

The adjective “absolute” means that the quantities are measured relative to an inertial frame of
reference.

Let r be the position vector of m2 relative to m1. Then,

r … R2 � R1 (2.5)

Or, using Eqn (2.1),

r … ðX2 � X1ÞÎ þ ðY2 � Y1ÞĴ þ ðZ2 � Z1ÞK̂ (2.6)

Furthermore, let ûr be the unit vector pointing from m1 toward m2, so that

ûr …
r
r

(2.7)

where r is the magnitude of r,

r …
����������������������������������������������������������������������������
ðX2 � X1Þ2 þ ðY2 � Y1Þ2 þ ðZ2 � Z1Þ2

q
(2.8)

The body m1 is acted upon only by the force of gravitational attraction toward m2. The force of
gravitational attraction, Fg, which acts along the line joining the centers of mass of m1 and m2, is given
by Eqn (1.40). Therefore, the force exerted on m1 by m2 is

F12 …
Gm1m2

r2 ûr (2.9)

where ûr accounts for the fact that the force vector F12 is directed from m1 toward m2. (Do not confuse
the symbol G, used in this context to represent the universal gravitational constant, with its use
elsewhere in the book to denote the center of mass.) By Newton’s third law (the action–reaction
principle), the force F21 exerted on m2 by m1 is �F12, so that

F21 … �
Gm1m2

r2 ûr (2.10)

Newton’s second law of motion as applied to a body m1 is F12 … m1 �R1, where �R1 is the absolute
acceleration of m1. Combining this with Newton’s law of gravitation (Eqn (2.9)) yields

m1 �R1 …
Gm1m2

r2 ûr (2.11)
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Likewise, by substituting F21 … m2 �R2 into Eqn (2.10) we get

m2 �R2 … �
Gm1m2

r2 ûr (2.12)

It is apparent upon forming the sum of Eqns (2.11) and (2.12) that m1 �R1 þ m2 �R2 … 0. According to
Eqn (2.4), this means that the acceleration of the center of mass G of the system of two bodies m1 and
m2 is zero. Therefore, as is true for any system that is free of external forces, G moves in a straight line
through space with a constant velocity vG. Its position vector relative to XYZ is given by

RG … RG0 þ vGt (2.13)

where RG0 is the position of G at time t … 0. The nonaccelerating center of mass of a two-body system
may serve as the origin of an inertial frame.

EXAMPLE 2.1
Use the two-body equations of motion to show why orbiting astronauts experience weightlessness.

Solution
We sense weight by feeling the contact forces that develop wherever our body is supported. Consider an astronaut
of mass mA strapped into a spacecraft of mass mS, in orbit about the earth. The distance between the center of the
earth and the spacecraft is r, and the mass of the earth is ME. Since the only external force is that of gravity, FSÞg ,
the equation of motion of the spacecraft is

FSÞg … mSaS (a)

where aS is measured in an inertial frame. According to Eqn (2.6),

FSÞg … �
GMEmS

r2 ûr (b)

in which ûr is the unit vector pointing outward from the earth toward the orbiting spacecraft. Thus, Eqns (a) and (b)
imply that the absolute acceleration of the spacecraft is

aS … �
GME

r2 ûr (c)

The equation of motion of the astronaut is

FAÞg þ CA … mAaA (d)

In this expression FAÞg is the force of gravity on (i.e., the weight of) the astronaut, CA is the net contact force on the
astronaut from restraints (e.g., seat, seat belt), and aA is the astronaut�s absolute acceleration. According to
Eqn (2.6),

FAÞg … �
GMEmA

r2 ûr (e)

Since the astronaut is moving with the spacecraft, we have, noting Eqn (c),

aA … aS … �
GME

r2 ûr (f)

Substituting Eqns (e) and (f) into Eqn (d) yields

�
GMEmA

r2 ûr þ CA … mA

�
�

GME

r2 ûr

�
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from which it is clear that

CA … 0

The net contact force on the astronaut is zero. With no reaction to the force of gravity exerted on the body, there is
no sensation of weight.

The potential energy V of the gravitational force F between two point masses m1 and m2 separated by a
distance r is given by

V … �
Gm1m2

r
(2.14)

A conservative force like gravity can be obtained from its potential energy function V by means of the
gradient operator,

F … �VV (2.15)

where, in Cartesian coordinates,

V …
v
vx

î þ
v
vy

ĵ þ
v
vz

k̂ (2.16)

For the two-body system in Figure 2.1 we have, by combining Eqns (2.8) and (2.14),

V … �
Gm1m2����������������������������������������������������������������������������

ðX2 � X1Þ2 þ ðY2 � Y1Þ2 þ ðZ2 � Z1Þ2
q (2.17)

The attractive forces F12 and F21 in Eqn (2.6) are derived from Eqn (2.17) as follow:

F12 … �
�

vV
vX2

î þ
vV
vY2

ĵ þ
vV
vZ2

k̂
�

F21 … �
�

vV
vX1

î þ
vV
vY1

ĵ þ
vV
vZ1

k̂
�

In Appendix E, it is shown that the gravitational potential, V, and hence the gravitational force
outside of a sphere with a spherically symmetric mass distribution M is the same as that of a
point mass M located at the center of the sphere. Therefore, the two-body problem applies not
only to point masses but also to spherical bodies (as long as, of course, they do not come into
contact!).

Let us return to Eqn (2.7), the equations of motion of the two-body system relative to the XYZ
inertial frame. We can divide m1 out of Eqn (2.11) and m2 out of Eqn (2.12) and then substitute Eqn
(2.7) into both results to obtain

�R1 … Gm2
r
r3 (2.18a)

�R2 … �Gm1
r
r3 (2.18b)
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These are the final forms of the equations of motion of the two bodies in inertial space. With the aid of
Eqns (2.1), (2.6), and (2.8) we can express these equations in terms of the components of the position
and acceleration vectors in the inertial XYZ frame:

�X1 … Gm2
X2 � X1

r3
�Y1 … Gm2

Y2 � Y1

r3
�Z1 … Gm2

Z2 � Z1

r3 (2.19a)

�X2 … Gm1
X1 � X2

r3
�Y2 … Gm1

Y1 � Y2

r3
�Z2 … Gm1

Z1 � Z2

r3 (2.19b)

where r …
����������������������������������������������������������������������������
ðX2 � X1Þ2 þ ðY2 � Y1Þ2 þ ðZ2 � Z1Þ2

q
.

The position vector R and velocity vector V of a particle are referred to collectively as its state
vector. The fundamental problem before us is to find the state vectors of both particles of the two-body
system at a given time given the state vectors at an initial time. The numerical solution procedure is
outlined in Algorithm 2.1.

n
ALGORITHM 2.1
Numerically compute the state vectors R1,V1 and R2,V2 of the two-body system as a function of
time, given their initial values R0

1; V0
1 and R0

2; V0
2. This algorithm is implemented in MATLAB as

the function twobody3d.m, which is listed in Appendix D.5.

1. Form the vector consisting of the components of the state vectors at time t0,

y0 … PX0
1 Y0

1 Z0
1 X0

2 Y0
2 Z0

2
_X0
1

_Y0
1

_Z0
1

_X0
2

_Y0
2

_Z0
2 R

2. Provide y0 and the final time tf to Algorithm 1.1, 1.2, or 1.3, along with the vector that comprises
the components are the state vector derivatives

fðt; yÞ … P _X1 _Y1 _Z1 _X2 _Y2 _Z2 �X1
�Y1

�Z1
�X2

�Y2
�Z2 R

where the last six components, the accelerations, are given by Eqns (2.19).
3. The selected algorithm solves the system _y … fðt; yÞ for the system state vector

y … PX1 Y1 Z1 X2 Y2 Z2 _X1 _Y1 _Z1 _X2 _Y2 _Z2 R

at n discrete times tn from t0 through tf.
4. The state vectors of m1 and m2 at the discrete times are

R1 … X1Î þ Y1Ĵ þ Z1K̂ V1 … _X1Î þ _Y1Ĵ þ _Z1K̂
R2 … X2Î þ Y2Ĵ þ Z2K̂ V2 … _X2Î þ _Y2Ĵ þ _Z2K̂

n

EXAMPLE 2.2
A system consists of two massive bodies m1 and m2 each having a mass of 1026 kg. At time t … 0 the state vectors
of the two particles in an inertial frame are

Rð0Þ
1 … 0 Vð0Þ

1 … 10̂I þ 20Ĵ þ 30K̂ ðkm=sÞ

Rð0Þ
2 … 3000̂I ðkmÞ Vð0Þ

2 … 40Ĵ ðkm=sÞ
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FIGURE 2.2

The motion of two identical bodies acted on only by their mutual gravitational attraction, as viewed from the
inertial frame of reference.
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FIGURE 2.3

The Motion in Figure 2.2: (a) As viewed relative to m1 (or m2); (b) As viewed from the center of mass.
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Use Algorithm 2.1 and the RKF4(5) method (Algorithm 1.3) to numerically determine the motion of the two
masses due solely to their mutual gravitational attraction from t … 0 to t … 480 s.

(a) Plot the motion of m1 and m2 relative to the inertial frame.
(b) Plot the motion of m2 and G relative to m1.
(c) Plot the motion of m1 and m2 relative to the center of mass G of the system.

Solution
The MATLAB function twobody3d.m in Appendix D.5 contains within it the data for this problem. Embedded in the
program are the subfunction rates, which compute the accelerations given by Eqns (2.19). twobody3d.muses the
solution vector from rkf45.m to plot Figures 2.2 and 2.3, which summarize the results requested in the problem
statement.

In answer to part (a), Figure 2.2 shows the motion of the two-body system relative to the inertial frame. m1 and
m2 are soon established in a periodic helical motion around the straight-line trajectory of the center of mass G
through space. This pattern continues inde�nitely.

Figure 2.3(a) relates to part (b) of the problem. The very same motion appears rather less complex when viewed
from m1. In fact we see that R2(t) � R1(t), the trajectory of m2 relative to m1, appears to be an elliptical path. So
does RG(t) � R1(t), the path of the center of mass around m1.

Finally, for part (c) of the problem, Figure 2.3(b) reveals that both m1 and m2 follow apparently elliptical paths
around the center of mass.

One may wonder what the motion looks like if there are more than two bodies moving only under the
influence of their mutual gravitational attraction. The n-body problem with n > 2 has no closed form
solution, which is complex and chaotic in nature. The three-body problem is briefly addressed in
Appendix C, where the equations of motion of the system are presented. Appendix C lists the
MATLAB program threebody.m that is used to solve the equations of motion for given initial con-
ditions. Figure 2.4 shows the results for three particles of equal mass, equally spaced initially along the
X-axis of an inertial frame. The central mass has an initial velocity in the XY plane, while the other two
are at rest. As time progresses, we see no periodic behavior as was evident in the two-body motion in
Figure 2.2. The chaos is more obvious if the motion is viewed from the center of mass of the three-
body system, as shown in Figure 2.5. The computer simulation reveals that the masses all eventu-
ally collide.

2.3 Equations of relative motion
Let us differentiate Eqn (2.5) twice with respect to time in order to obtain the relative acceleration
vector,

�r … �R2 � �R1

Substituting Eqn (2.9) into the right side of this expression yields

�r … �
Gðm1 þ m2Þ

r2 ûr (2.20)
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The gravitational parameter mis defined as

m… Gðm1 þ m2Þ (2.21)

The units of mare cubic kilometers per square second. Using Eqn (2.21) together with Eqn (2.5), we
can write Eqn (2.20) as

�r … �
m
r3 r (2.22)

m3

m1

m2

m3

m2

m1

m3

m2

m3

m1 m2 m3

m1

G

G

v0

X
Inertial
frame

FIGURE 2.4

The motion of three identical masses as seen from the inertial frame in which m1 and m3 are initially at rest, while
m2 has an initial velocity v0 directed upward and to the right, as shown.
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m2

m2

m1

m1

m3

m3
m2

m1
X

FIGURE 2.5

The same motion as in Figure 2.4, as viewed from the inertial frame attached to the center of mass G.
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This nonlinear second-order differential equation governs the motion of m2 relative to m1. It has two
vector constants of integration, each having three scalar components. Therefore, Eqn (2.22) has six
constants of integration. Note that interchanging the roles of m1 and m2 amounts to simply multiplying
Eqn (2.22) through by �1, which, of course, changes nothing. Thus, the motion of m2 as seen from m1
is precisely the same as the motion of m1 as seen from m2. The motion of the moon as observed from
the earth appears the same as that of the earth as viewed from the moon.

The relative position vector r in Eqn (2.22) was originally defined in the inertial frame (Eqn (2.6)).
It is convenient, however, to measure the components of r in a frame of reference attached to and
moving with m1. In a comoving reference frame, such as the xyz system illustrated in Figure 2.6, r has
the expression

r … x̂i þ ŷj þ zk̂

The relative velocity _rrel and acceleration �rrel in the comoving frame are found by simply taking the
derivatives of the coefficients of the unit vectors, which themselves are fixed in the moving xyz system.
Thus,

_rrel … _x̂i þ _ŷj þ _zk̂ �rrel … �x̂i þ �ŷj þ �zk̂

From Eqn (1.77), we know that the relationship between absolute acceleration �r and relative accel-
eration �rrel is

�r … �rrel þ _U � r þ U � ðU � rÞ þ 2U � �rrel

where U and _U are the absolute angular velocity and angular acceleration of the moving frame of
reference. Thus, �r … �rrel only if U … _U … 0. That is to say, the relative acceleration may be used on the
left of Eqn (2.22) as long as the comoving frame in which it is measured is not rotating.

X

Y

Z

O

R1

m1

m2

x
r

R2

î

ĵ

k̂

FIGURE 2.6

Moving reference frame xyz attached to the center of mass of m1.
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In the remainder of this chapter and those that follow, the analytical solution of the two-body
equation of relative motion (Eqn (2.22)) will be presented and applied to a variety of practical
problems in orbital mechanics. Pending an analytical solution, we can solve Eqn (2.22) numerically in
a manner similar to Algorithm 2.1.

To begin, we imagine a nonrotating Cartesian coordinate system attached to m1, as illustrated in
Figure 2.6. Resolve �r … �ðm=r3Þr into components in this moving frame of reference to obtain the
relative acceleration components

�x … �
m
r3 x �y … �

m
r3 y �z … �

m
r3 z (2.23)

where r …
������������������������
x2 þ y2 þ z2

p
. The components of the state vector ðr … x̂i þ ŷj þ zk̂; v … _x̂i þ _ŷj þ _zk̂Þ

are listed in the vector y,
y … Px y z _x _y _z R

The time derivative of this vector comprises the state vector rates,

_y … P_x _y _z �x �y �z R

where the last three components, the accelerations, are given by Eqn (2.23).

n
ALGORITHM 2.2
Numerically compute the state vector r, v of m1 relative to m2 as a function of time, given the initial
values r0, v0. This algorithm is implemented in MATLAB as the function orbit.m, which is listed in
Appendix D.6.

1. Form the vector comprising the components of the state vector at time t0,

y0 … Px0 y0 z0 _x0 _y0 _z0 R

2. Provide the state vector derivatives

fðt; yÞ … P_x _y _z �
m
r3 x �

m
r3 y �

m
r3 z R

together with y0 and the final time tf to Algorithm 1.1, 1.2, or 1.3.
3. The selected algorithm solves the system _y … fðt; yÞ for the state vector

y … Px y z _x _y _z R

at n discrete times tn from t0 through tf.
4. The position and velocity at the discrete times are

r … x̂i þ ŷj þ zk̂ v … _x̂i þ _ŷj þ _zk̂

n
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MATLAB Scripts D
D.1 Introduction

This appendix lists MATLAB scripts that implement all of the numbered algorithms presented
throughout the text. The programs use only the most basic features of MATLAB and are liberally
commented so as to make reading the code as easy as possible. To �drive� the various algorithms, one
can use MATLAB to create graphical user interfaces (GUIs). However, in the interest of simplicity and
keeping our focus on the algorithms rather than elegant programming techniques, GUIs were not
developed. Furthermore, the scripts do not use �les to import and export data. Data is de�ned in
declaration statements within the scripts. All output is to the screen, that is, to the MATLAB Command
Window. It is hoped that interested students will embellish these simple scripts or use them as a
springboard toward generating their own programs.

Each algorithm is illustrated by a MATLAB coding of a related example problem in the text. The
actual output of each of these examples is also listed.

It would be helpful to have MATLAB documentation at hand. There are a number of practical ref-
erences on the subject, including Hahn (2002), Kermit and Davis (2002), and Magrab (2000). MATLAB
documentation may also be found at The MathWorks Web site (www.mathworks.com). Should it be
necessary to do so, it is a fairly simple matter to translate these programs into other software languages.

These programs are presented solely as an alternative to carrying out otherwise lengthy hand
computations and are intended for academic use only. They are all based exclusively on the intro-
ductory material presented in this text.

Chapter 1

D.2 Algorithm 1.1: Numerical integration by Runge�Kutta methods RK1,
RK2, RK3, or RK4
Function �le rkf1_4.m
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
function [tout, yout] … rk1_4(ode_function, tspan, y0, h, rk)
% wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
%{

This function uses a selected Runge-Kutta procedure to integrate
a system of first-order differential equations dy/dt … f(t,y).
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